

Plans for the implementation of a Global Track Fitter in CMS

Daniele Trocino

Università di Torino, INFN Torino

CMS Torino weekly meeting 16 October, 2009

Outline

Track fitting in CMS

- Kalman Filter
- Muon reconstruction: description and performance
- strengths and weaknesses
- Need for a Global Fitter
 - concepts, working and benefits
 - applications and limits
- Future plans
 - what we have, what we need

Tracking in CMS

In a magnetic field, the trajectory is a helix \rightarrow 5 parameters:

x = (charge/momentum, position and direction on a given surface)

Reconstruction of the trajectory of charged particles from position measurements

Requirements:

- account for multiple scattering and energy loss
- used both in Tracker (1/2-dim hits) and Muon System (1/2/3-dim hits/segments)
- it must provide
 - the pattern recognition → collection of hits
 - the best estimation of the track \rightarrow minimum χ^2
- ... possibly in the fastest way! → well suited for HLT

Kalman Filter

The Kalman Filter (I)

Based on three basic steps: *prediction* (*propagation*), *filtering*, *smoothing*

Measurement on k^{th} layer:

$$m_k = H_k x_k^{true} + \epsilon_k$$

1/2/3 dim 5 dim "noise"

Predicted state and covariance matrix:

$$x_k^{k-1} = F_{k-1} x_{k-1}$$
magn. field, energy loss
$$C_k^{k-1} = F_{k-1} C_{k-1} F_{k-1} + M_{k-1}$$

Filtered state and covariance matrix:

$$x_{k} = x_{k}^{k-1} + K_{k} \left(m_{k} - H_{k} x_{k}^{k-1} \right)$$
Kalman gain matrix
$$\uparrow$$

$$C_{k} = \left(1 - K_{k} H_{k} \right) C_{k}^{k-1}$$

The Kalman Filter (II)

On the k^{th} layer, the *filtered state* x_k contains information only from the first k hits Once all the n hits have been collected, the **smoothing** is performed \rightarrow each x_k is updated with the information from the last n - k layers

Smoothed state and covariance matrix:

$$x_{k} = x_{k}^{k-1} + A_{k} (x_{k+1}^{n} - x_{k+1}^{k})$$
smoother gain matrix
$$C_{k}^{n} = C_{k} + A_{k} (C_{k+1}^{n} - C_{k+1}^{k}) A_{k}^{T}$$

The *smoothed* trajectory represents the best estimate (minimum χ^2) for the given set of hits

The Propagators

Muon transport in the detector accounting for magnetic field and material effects

Magnetic field, *mean* energy loss (Bethe-Block) → **state vector**

Multiple scattering, energy loss *fluctuations* → **covariance matrix**

1. Analytic (used in the Tracker)

assumes a *uniform magnetic field* (perfect helix)

The state vector is propagated from layer to layer, material effects are introduced in the end-points

2. Runge-Kutta (used in the Tracker)

4th order Runge-Kutta method → non-uniform magnetic field (radial component)

The state vector is propagated from layer to layer, material effects are introduced in the end-points

3. Stepping-Helix (mainly outside the Tracker)

2nd order Runge-Kutta method → uniform magnetic field

The CMS volume is mapped in cells with uniform magnetic field

- → inside each cell the trajectory is a helix
- → at each step, the magnetic field is updated and the material effects are introduced

Stand-alone reconstruction

The track reconstruction in the Muon System takes place in four steps:

- 1. Estimation of the initial state (*seed*)
 - on-line: input from Level 1 trigger
 - off-line: built from one or more track segments

 p_T parametrized as a function of ϕ (or $\Delta \phi$) of segments: $p_T = A - B/\Delta \phi$

2. Pre-filter or forward filter (inside-out)

- starts from the *seed state* (extrapolated at the *innermost* layer)
- segments (1D hits for RPC) are used for *pattern recognition*, on a χ^2 basis
- segments (1D hits for RPC) are used for *update* (*filtering*) of the trajectory
- needed to avoid possible biases from the seed

3. Filter or backward filter (outside-in)

- starts from the *outermost* pre-filtered state
- segments (1D hits for RPC) are used for *pattern recognition*, on a χ^2 basis
- single hits (1D for DT/RPC, 2D for CSC) are used for the *update*

4. Vertex constraint

After the ghost suppression, the trajectory is extrapolated to the *point of closest approach* to the *beam line* and the *beam spot* is constrained to be a point of the track, to improve the p_{τ} resolution

Fit in stand-alone reconstruction

Weaknesses of Kalman Filter

- Crucial point: initialization of the covariance matrix
 - too large initial errors → too sensitive to possible low quality hits
 - too small initial errors → bias
- recursive method proves more unstable a single bad hit can irreparably damage the fit

efficiency loss

worsening of p_T estimation (in some cases)

Besides (not directly related to KF)

 calorimeters information is not exploited in the estimation of the energy loss (only simulated)

Global χ^2 Fit (I)

Non iterative method: all the collected measuremets are fitted simultaneously

Function to be minimized:

$$\chi^{2} = \sum_{meas} \frac{r_{meas}^{2}}{\sigma_{meas}^{2}} + \sum_{scatt} \left| \frac{\theta_{scatt}^{2}}{\sigma_{scatt}^{2}} + \frac{\sin^{2}\theta_{loc} \, \phi_{scatt}^{2}}{\sigma_{scatt}^{2}} \right| + \sum_{E_{loss}} \frac{(\Delta E - \overline{\Delta E})^{2}}{\sigma_{E_{loss}}^{2}}$$
residuals

multiple scattering

energy loss

Fit parameters:

- track parameters at vertex: $\alpha = (q/p_{T,0}, D_0, z_0, \phi_0, \lambda_0 = \cot\theta_0)$
- scattering angles $(\phi_{scatt}, \theta_{scatt})$ for each layer
- energy loss ΔE (ΔE from material description or measured in calorimeters)

Global χ^2 Fit (II)

Starting from the *initial state* of parameters α_0 , we propagate the trajectory layer by layer. So on each layer we have

- a measurement y_k
- a propagated state $y_k^{prop} = f_k(\mathbf{\alpha_0})$

$$r_{k} = y_{k} - y_{k}^{fit}$$

$$= y_{k} - f_{k}(\boldsymbol{\alpha})$$

$$= \underbrace{y_{k} - f_{k}(\boldsymbol{\alpha}_{0})}_{\Delta y_{k}} - \sum_{i} \frac{\partial f_{k}}{\partial \alpha_{i}} (\alpha_{i,0}) \cdot (\alpha_{i} - \alpha_{i,0})$$

$$= \Delta y_{k} - \sum_{i} A_{k,i} \cdot \eta_{i}$$

Thus on each layer we have to pick up

- the (approximated) *residual* Δy_k
- its derivatives w.r.t. the fit parameters $A_{k,i}$

Global χ^2 Fit (III)

In matrix form:
$$\mathbf{r} = \Delta \mathbf{y} - \mathbf{A} \cdot \boldsymbol{\eta}$$

$$\chi^{2} = \left[\Delta \mathbf{y} - \mathbf{A} \cdot \boldsymbol{\eta} \right]^{t} \mathbf{V}_{\mathbf{y}}^{-1} \left[\Delta \mathbf{y} - \mathbf{A} \cdot \boldsymbol{\eta} \right] = \mathbf{r}^{t} \mathbf{V}^{-1} \mathbf{r}$$

with $\mathbf{V}_{\mathbf{y}}^{-1}$ being the *weight matrix*, inverse of the *covariance matrix* of the measurements y_i .

Minimizing, one gets:
$$\boldsymbol{\eta} = \mathbf{V}_{\mathbf{A}} \mathbf{A}^t \mathbf{V}_{\mathbf{y}}^{-1} \boldsymbol{\Delta} \mathbf{y}$$

with
$$\mathbf{V_A} = \left(\mathbf{A}^t \ \mathbf{V_y}^{-1} \ \mathbf{A}\right)^{-1} = \mathbf{V_\eta}$$

Finally:
$$\pmb{\alpha} = \pmb{\alpha}_0 + \pmb{\eta}$$
 and $\pmb{V}_{\pmb{\alpha}} = \pmb{V}_{\pmb{\eta}} = \pmb{V}_{\pmb{\Lambda}}$

Notice that by replacing $V_y \rightarrow V = V_y + V_{MS}$, the *multiple scattering* contribution can be taken into account as well.

Fitting the scattering angles and the energy loss is more complicated.

Virtues of the Global χ^2 Fitter

- Only initial state is needed, no need to initialize the covariance matrix of α₀
- Non-iterative procedure

more stable (no efficiency loss, no resolution degrade)

Moreover...

- ... it yields the *scattering angles* and *residual derivatives* on each layer (e.g. used for alignment)
- ... it can be used (optionally) to resolve the left-right ambiguity and compute the time pedestal in the DT's
- ... it makes it easier to include calorimeter measurements

Vices of the Global χ^2 Fitter

- Inversion of large matrices: for n measurements, \mathbf{V}_{y} is $n \times n$
 - if measurements are all uncorrelated, time for inversion $\sim O(n)$
 - if measurements are correlated (e.g. multiple scattering), time $\sim O(n^3)$
- Including scattering angles (2 per layer), many fit parameters
 - also V_A is very large
 - → Need for fast matrix inversion algorithms

e.g. the *Bunch-Kaufman* method (in CLHEP) is used in ATLAS and requires ~ twice as much CPU time as the Kalman Filter

Using approximated inverse matrices, the estimate of the parameters is still *unbiased*, but with larger errors (*non-optimal least squares* fitting)

Future Plans

- A Global Fitter is not yet available in CMS, but some tools are already there
 - ReferenceTrajectory code by G. Flucke et al. used for Tracker alignment
 - specific for Tracker, not immediately usable outside e.g. uses the Analytic Propagator
- Need to figure out how to
 - handle the energy loss and multiple scattering in the Muon Chambers
 - feed the calorimeter deposits in the track fitting
- Possible applications
 - fitter for the stand-alone tracks
 - additional fitter for tracker and global tracks

Back-up slides

Global reconstruction

The stand-alone track defines a *region of interest* (ROI) in the Tracker. Then two different strategies are available.

Prompt reconstruction

Tracker tracks are reconstructed *only* inside the ROI. It is used in the on-line trigger reconstruction for its rapidity

Track matching

Tracker tracks are built independently in the *whole* Tracker and the ones in the ROI are selected It is used in the off-line reconstruction

Reconstruction in the inner Tracker

Two different algorithms can be used to resolve the hit pattern in the Tracker

- Kalman Filter, with seeds built from 2 or 3 consecutive hits
- Road Search: starting from one hit in the innermost layer and one in the outermost layer, the hits are selected using pre-set roads

After the selection, the hits are fitted and the track is built.

The most compatible Tracker track is chosen and the whole set of hits is fitted (Tracker + Muon hits)

