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Preface

The topic of this thesis is the design of the final version of the integrated circuit

CMAD developed for the COMPASS experiment at CERN.

The project has been carried out at the VLSI Laboratory of the INFN of Turin.

As a first step, the limitations of an existing prototype of the circuit have been

identified in order to improve the circuit performance especially from the counting

rate point of view.

In fact a higher counting rate is one of the major requirements for the new front-

end circuit and the improvement of the counting rate capability is a demanding

specification.

Thus to obtain an understanding of the factors affecting the circuit response, a

thorough study of the existing architecture has been carried out and an accurate

mathematical model has been analytically derived.

The blocks critical for the circuit performance have been pointed out and a new

design of these blocks has been achieved.

In particular the BLH (baseline holder) block has been modelled and redesigned

and the design and the optimisation of the whole analog chain consisting of the

preamplifier, the pulse shaper and the BLH (buffer + transconductor block) have

been accomplished.

An outline of each chapter will be presented now in order to give a general idea

of the thesis structure and the specific topics covered throughout this work.

Chapter 1 contains an overview of the COMPASS experiment for which the front-

end chip is designed. A brief description of the COMPASS spectrometer be-

havior as well as the RICH particle detectors is given. The basics of Cherenkov

effect, the fundamental principle that the RICH detectors are founded on,

are also covered. The general behavior of the PMTs is presented. Finally a

comparison between the main features and performance of the new front-end
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Preface

circuit and those of the old one is performed.

Chapter 2 deals with the general characteristics of front-end circuits. The main

purpose of this chapter is to give an insight into the architecture and the be-

havior of the stages making up a detector readout system, namely a CSA and

a pulse shaper. Thus, the analysis performed is fairly qualitative and it is

founded on a set of general relationships allowing an approximate understand-

ing of the circuit behavior.

Chapter 3 contains a detailed analysis of the first two stages of our detector read-

out system. The models used for representing the main characteristics of each

of the circuit building blocks are presented. The small-signal transfer function

as well as the input and output impedance of each stage are analytically de-

rived in the frequency domain and described. The time-domain pulse response

of each stage is also given graphically and discussed. Moreover, a lot of other

graphical outputs are presented in order to check the accuracy of the results

obtained through our models.

Chapter 4 deals with the modelling and analysis of the slew-rate limited non-linear

buffer making up (together with a transconductor block) the BLH (baseline

holder). The BLH is a particularly important block because it provides the cir-

cuit output baseline stabilisation both at low frequency and at a high counting

rate. Furthermore all the computer simulations performed to set important

design parameters are given.

Chapter 5 is concerned with the design of the non-linear buffer modelled in chap-

ter 4. Several SPICE simulations of the actual circuit are performed in order

to check it works properly especially when processing large and fast signals. A

detailed analysis of the large-signal buffer basic circuit is carried out to iden-

tify circuit limitations and drawbacks. An alternative circuit for solving these

problems is presented and analysed.

Chapter 6 deals with the single-pulse characterisation and the actual-circuit re-

sponse to various sequences of pulses to show the efficient baseline stabilisation

occurring for fast and large signals and performed by the new BLH block. The

performance of a circuit version producing narrower output pulses and thus

able to provide a higher counting rate is discussed.
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Preface

Finally, we add that all the calculations presented throughout this thesis have

been performed by using Mathematica, a general computer software system and

language. In fact, although SPICE simulations could be performed to obtain the

same numerical results, Mathematica’s symbolic computation capabilities allowed

us to obtain symbolic relationships which proved to be very useful in understanding

the circuit behavior. In fact the circuits considered are simple enough to allow an

analytical approach.
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Chapter 1

Introduction

The topics covered in this thesis concern the front-end electronics of particle detec-

tors. The purpose of such a detector is the acquisition of data allowing us to collect

information about the energies and trajectories of subatomic particles.

In particular, the circuit studied throughout the thesis will be used for a specific

high-energy physics experiment called COMPASS (Common Muon Proton Appara-

tus for Structure and Spectroscopy) taking place at CERN in Geneva.

1.1 The COMPASS Experiment

The COMPASS experiment is a fixed target experiment at the CERN Super Proton

Synchrotron (SPS). The purpose of this experiment is the study of hadron structure

and spectroscopy with high intensity muon and hadron beams.

The physics programme includes measurements of semi-inclusive and inclusive

polarized deep inelastic scattering, charm production, search for exotics in high

quark spectroscopy and Primakov reactions. One of the main goals of the experiment

is the measurement of the contribution of the gluon spins to the angular momentum

of the nucleon.

The COMPASS experiment was constructed in 1998-2000 and was commissioned

during a technical run in 2001. The experiment set-up is made up of two spec-

trometers, a large-angle spectrometer followed by a small-angle spectrometer both

provided with a gas RICH detector (RICH-1 and RICH-2) for hadron identification.

A three-dimensional view of the COMPASS spectrometer is shown in Fig. 1.1.

The first physics run took place in 2002 and continued until the end of 2004.
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1 – Introduction

Figure 1.1: Three-dimensional view of the COMPASS spectrometer at CERN.

After a year shutdown in 2005, data taking should continue in 2006. Nearly 240

physicists from 12 countries and 28 institutions are working on COMPASS.

One of the main new features of COMPASS with respect to previous experiments

is its powerful data acquisition. The read-out architecture is based on custom elec-

tronics and operated with a 40 MHz clock. A trigger rate of 5 kHz was used for the

muon experiments but the real DAQ capabilities will be exploited by the hadron

beam experiments, even if the full rate of 50-100 kHz can be only used with a very

efficient event reduction.

The total amount of data recorded in 2002 is very large and amounts to 9 billion

events or 260 TByte.

1.1.1 The COMPASS Spectrometer

To obtain a general understanding of the concept and performance of the COMPASS

spectrometer, which is at the heart of the COMPASS experiment, we will give a brief

description of its behavior.

A schematic view of the COMPASS spectrometer is shown in Fig. 1.2. The spec-

trometer is made up of two stages, the large-angle spectrometer (LAS) covering an

2



1 – Introduction

aperture of ±180 mrad and the small-angle spectrometer (SAS) detecting particles

within the inner ±30 mrad.

Both sections comprise tracking and particle identification detectors grouped

around the spectrometer dipole magnets SM1 and SM2 which provide field integrals

of 1 and 4.4 Tm. Tracking in the beam region is provided by scintillating fibre

and silicon detectors and in the intermediate region by MicroMeGas (Micro Mesh

Gaseous structure) and Gem (Gaseous Electron Multiplier) detectors. Large area

outer tracking is covered by drift chambers, multi-wire proportional chambers and

straw tubes. Both LAS and SAS comprise a hadron calorimeter.

Figure 1.2: Top view of the COMPASS spectrometer in 2002.

The muon beam has a large momentum spread and a considerable size and hence

a measurement of each single incoming particle is essential. The momentum is

measured by four scintillator hodoscopes. Upstream of the target the beam particle

trajectory is determined by a scintillating fibre hodoscope consisting of seven layers

of fibres and read out by multi-anode photomultiplier tubes. The association of

track and momentum is based on the time correlation.

The polarised target system consists of a superconducting target solenoid provid-

ing a field of 2.5 T and an additional dipole which can provide a transverse magnetic

field. The incoming muon beam traverses two 60 cm long target cells containing

oppositely longitudinally polarised deuterons.
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1 – Introduction

Finally it should be pointed out that the central apparatus for particle iden-

tification is the RICH-1 in the LAS. Before giving some additional information

about the RICH-1, it is useful to recall that a RICH (Ring Imaging CHerenkov)

detector is a particle detector that can determine the velocity v of a particle by

an indirect measurement of the Cherenkov angle θc, namely the angle between the

emitted Cherenkov radiation and the particle path (a more detailed explanation of

Cherenkov radiation will be given later).

In a RICH detector a cone of Cherenkov light is produced when a high speed

particle traverses a suitable medium, often called radiator, with a velocity greater

than the speed of light in that medium.

This light cone is detected on a position sensitive planar photon detector, which

allows reconstructing a ring or disc, whose radius is a measure for the Cherenkov

emission angle.

Both focusing and proximity-focusing detectors are in use. In a focusing RICH

detector the photons are collected by a spherical mirror with focal length f and

focused onto the photon detector placed at the focal plane. The result is a circle

with a radius r = f θc, independent of the emission point along the particle track.

This scheme is suitable for low refractive index radiators, i.e. gases, due to the larger

radiator length needed to create enough photons.

In the more compact proximity-focusing design a thin radiator volume emits a

cone of Cherenkov light which traverses a small distance – the proximity gap – and

is detected on the photon detector plane. The image is a ring of light whose radius is

defined by the Cherenkov emission angle and the proximity gap. The ring thickness

is determined by the thickness of the radiator.

1.1.2 The COMPASS RICH Detectors

As mentioned previously the COMPASS spectrometer used in the muon program is

a two stage spectrometer.

Hadrons produced in DIS (Deep Inelastic Scattering) are detected in the first

stage and scattered muons in the second stage.

Two RICH detectors termed RICH-1 and RICH-2 are at the heart of the two

stages respectively.

The RICH-1 is the fundamental tool for particle identification. Thus we will try

to summarise the most important technical aspects characterising its behavior.

4



1 – Introduction

The fundamental requirements for RICH-1 design related to the general design

of the experiment are:

I the capability to separate π and K with momenta up to ∼ 60 GeV/c in

a high-intensity environment

I the full acceptance of the LAS (horizontal: ±250 mrad; vertical: ±200 mrad)

I the minimisation of the total amount of material, to preserve the tracking

resolution of the SAS as well as the energy resolution of the downstream

electromagnetic and hadronic calorimeters

I the capability to register and handle high data fluxes.

Figure 1.3: Artistic view of COM-

PASS RICH-1.

An artistic view of COMPASS RICH-1 is

shown in Fig. 1.3 which displays the position

of some important detector components such

as the mirror wall and the photon detector

and also allows us to realise the real size of

the whole device.

From a qualitative point of view the RICH 1

is a gas RICH with a 3 meter-long C4 F10 ra-

diator at atmospheric pressure, mantained at

the temperature of 25◦C.

The mirror set-up consists of spherical mir-

rors having a radius of 6.6 m and segmented

in 120 hexagonal pieces covering a total area

greater than 20 m2 forming two spherical sur-

faces with different centres of curvature.

This solution allows the focalisation of the Cherenkov photons onto two sets of

photon detectors placed above and below the acceptance region.

The photon detectors are equipped with CsI photocathodes for a total active

surface of 5.3 m2.

The pixel segmentation of the photocathodes (pixel size: 8 × 8 mm2) results in

approximately 80 000 channels equipped with analog read-out electronics.

In addition to the information stated above on the main design parameters, we

can add that the gas radiator must be as pure as possible in order to limit the
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1 – Introduction

contamination from impurity able to absorb UV photons. The goal is water vapour

and oxygen traces smaller than 5ppm.

For the vessel, leakages < 10−2 mbar l/s as well as nonpolluting materials are

required. Moreover the vessel must be thermalised to reduce the refractive index

dispersion and designed to be the support for the mirror wall as well as the photon

detector.

Thus, the gas purity, the rigidity and the stability required to guarantee the rela-

tive alignement of mirrors and photon detector have been important design criteria.

For the mirrors the main requests concern good performance in the UV region,

surface shape and amount of material. In practice a good reflectance in the far UV

region is obtained by using a reflective coating of Al (80 nm) protected by a layer

of Mg F2 (30 nm).

The local deviation from the spherical shape must not exceed 0.2 mrad and the

radius deviation from its nominal value must be in the order of 0.5 % for each single

mirror.

The RICH-2 installed in the second stage is used for particle identification in the

high energy region, namely up to 120 GeV.

The structure of RICH-2 is similar to RICH-1. The thickness of the radiator gas

is 8 m. The radiator gas is a mixture of 50% C2 F6 and 50% Ne. The photon-detector

is the same type as that of RICH-1 and it has 23 K cathode pads.

1.2 Cherenkov Radiation

As mentioned in the previous section the Cherenkov effect is the fundamental prin-

ciple that the RICH detectors are founded on.

It is known that the speed of light in vacuum is a universal constant c whereas

the speed of light in a material may be significantly less than c (e.g. the speed of

light in water is 0.75 c).

Cherenkov radiation results when a charged particle, most commonly an electron,

exceeds the speed of light in a dielectric medium through which it passes.

Moreover, the velocity of light that must be exceeded is the phase velocity rather

than the group velocity.

The phase velocity can be altered dramatically by employing a periodic medium

or a complex periodic medium, such as a photonic crystal. In that case a variety
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1 – Introduction

of anomalous Cherenkov effects, such as radiation in a backward direction, can be

observed (let us recall that ordinary Cherenkov radiation forms an acute angle with

the particle velocity).

As a charged particle travels, it disrupts the local electromagnetic field in its

medium. Electrons in the atoms of the medium will be displaced and polarized by

the passing EM field of the charged particle.

Photons are emitted as the insulator electrons restore themselves to equilibrium

after the disruption has passed (in a conductor, the EM disruption can be restored

without emitting a photon).

In normal circumstances, these photons destructively interfere with each other

and no radiation is detected. However, when the disruption travels faster than

the photons themselves, the photons constructively interfere with and intensify the

observed radiation.

Figure 1.4: The geometry of the

Cherenkov radiation.

A common analogy is the sonic boom of a

supersonic aircraft. The sound waves gener-

ated by the supersonic body do not move fast

enough to get out of the way of the body itself.

Hence, the waves stack up and form a shock

front.

Similarly, a speed boat generates a large

bow shock because it travels faster than waves

can move on the surface of the water.

In the same way, a charged particle gen-

erates a photonic shockwave as it travels through

an insulator faster than the speed of light in that medium.

It should also be pointed out that Cherenkov radiation is entirely unrelated to

the bremsstrahlung, which is emitted by the moving electron itself when it collides

with atomic nuclei in the medium.

In contrast, the Cherenkov effect involves radiation emitted by the medium under

the action of the field of the particle moving in it.

The distinction between the two types of radiation appears with particular clarity

when the particle has a very large mass since bremsstrahlung disappears whereas

Cherenkov radiation is unaffected.

Figure 1.4 shows graphically what we stated above. The red arrow represents

the charged particle moving in the medium whereas the blue arrows represent the

7



1 – Introduction

photons emitted after the particle has passed.

From the figure it is apparent that this radiation is only observed at a particular

angle called Cherenkov angle ϕ, with respect to the track of the particle.

This angle represents the position in which waves from arbitrary points over the

particle track are coherent and combine to form a plane wave front.

If the velocity of the particle is v = β c where c is the velocity of light in vacuum

and c/n is the velocity of the Cherenkov light in the medium, then by taking into

account only geometrical considerations we can write the Cherenkov angle as

cos ϕ =

c

n (λ)
∆t

β c ∆t
(1.1)

from which

cos ϕ =
1

β n (λ)
(1.2)

where n is the refractive index of the medium and ∆t is the time interval considered

in Fig. 1.4.

Let us now consider equation (1.2) in order to analyse some particular implica-

tion, namely:

. for a medium of a given refractive index n, there is a threshold veloc-

ity βmin = 1/n, below which no radiation takes place. At this critical

velocity the direction of radiation coincides with that of the particle.

Thus the process can be used in the construction of threshold detectors

in which Cherenkov radiation is only emitted if the particle has velocity

greater than c/n.

. For an ultra-relativistic particle, for which β = 1, there is a maximum

angle of emission given by cos ϕ = 1/n.

. The radiation occurs in the visible and near visible regions of the spec-

trum, for which n > 1. A real medium is always dispersive, so actually

radiation is restricted to those frequency bands for which n (ω) > 1/β.

In the x-ray region it is always n (ω) < 1 and radiation is forbidden.

Thus, emission in the x-ray region is impossible because n is less than

unity and the equation cos ϕ = 1/n cannot be satisfied.

8
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There are two further conditions to be fulfilled to achieve coherence. First, the

length l of the track of the particle in the medium should be large compared with

the wavelength of the radiation in question, otherwise diffraction effects will become

dominant. Secondly, the velocity of the particle must be constant during its passage

through the medium, or, to be more specific, the differences in the times for the

particle to traverse successive distances λ should be small compared with the period

λ/c of the emitted light.

1.3 Photomultiplier Tubes

Since the signal to be read out by the front-end electronics comes from photomul-

tiplier tubes, it is interesting to obtain an insight into the main features of these

devices.

The photomultiplier tubes (PMTs) are used for light detecting of very weak

signals. They are photoemissive devices in which the absorption of a photon results

in the emission of an electron.

Figure 1.5: Three-dimensional schematic representation of a conventional PMT.

These detectors work by amplifying the electrons generated by a photocathode

exposed to a photon flux. A three-dimensional schematic representation of such a

device is shown in Fig. 1.5.
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Photomultipliers acquire light through a glass or quartz window that covers a

photosensitive surface, called the photocathode, which then releases electrons that

are multiplied by electrodes known as metal channel dynodes.

At the end of the dynode chain there is an anode or collection electrode. Over

a very large range, the current flowing from the anode to ground is directly propor-

tional to the photoelectron flux generated by the photocathode.

The spectral response, quantum efficiency, sensitivity, and dark current of a

photomultiplier tube are determined by the composition of the photocathode.

The best photocathodes capable of responding to visible light are less than 30%

quantum efficient, meaning that 70% of the photons impacting on the photocathode

do not produce a photoelectron and are therefore not detected.

Photocathode thickness is an important variable that must be monitored to

ensure the proper response from absorbed photons.

If the photocathode is too thick, more photons will be absorbed but fewer elec-

trons will be emitted from the back surface, but if it is too thin, too many photons

will pass through without being absorbed.

Figure 1.6: Dynode number versus

PMT gain.

The elecrons emitted by the photocath-

ode are accelerated toward the dynode chain,

which may contain up to 14 elements.

Focusing electrodes are usually present to

ensure that photoelectrons emitted near the

edges of the photocathode are likely to land

on the first dynode.

Upon impacting the first dynode, a pho-

toelectron will invoke the release of additional

electrons that are accelerated toward the next

dynode, and so on.

The surface composition and geometry of

the dynodes determines their ability to serve

as electron multipliers. Because the gain varies

with the voltage across the dynodes and the total number of dynodes, electron gains

of 10 million are possible if 12–14 dynode stages are employed, as shown in Fig. 1.6.

Photomultipliers produce a signal even in the absence of light due to the dark

current arising from thermal emissions of electrons from the photocathode, leakage
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1 – Introduction

current between dynodes, as well as stray high-energy radiation.

Electronic noise also contributes to the dark current and is often included in the

dark-current value.

1.3.1 Channel Photomultipliers

Channel photomultipliers represent a new design that incorporates a detector having

a semitransparent photocathode deposited onto the inner surface of the entrance

window.

Photoelectrons released by the photocathode enter a narrow and curved semi-

conductive channel that performs the same functions as a classical dynode chain.

Each time an electron impacts the inner wall of the channel, multiple secondary

electrons are emitted. These ejected photoelectrons have trajectories angled at the

next bend in the channel wall (simulating a dynode chain), which in turn emits a

larger quantity of electrons angled at the next bend in the channel.

The effect occurs repeatedly, leading to an avalanche effect with a gain exceeding

100 million.

Figure 1.7: Three-dimensional schematic representation of a channel PMT.

Thus, the channel photomultiplier is a design that eliminates the hundreds of

elements necessary to construct a conventional dynode chain.

The advantages of this design are lower dark current (pA range), increased sen-

sitivity, wider bandwidth, and an extended dynamic range.
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The monolithic structure provides a fairly high efficiency. Secondary emission

of electrons occurs identically on any portion of the photomultiplier sidewalls, thus

optimizing performance.

Because photomultipliers do not store charge and respond to changes in input

light fluxes within a few nanoseconds, they can be used for the detection and record-

ing of extremely fast events.

Finally, the signal to noise ratio is very high in scientific grade photomultipliers

because the dark current is extremely low (it can be further reduced by cooling).

1.4 Front-End Electronics for the RICH

In this section we will consider the main reasons which have led to the development

of a new design for the detector front-end circuit.

In fact, these new requirements have motivated the modelling and the analysis

performed throughout this thesis on the front-end circuit, to give the basis for the

improvement of the circuit performance, especially at a high counting rate.

An overview of the old circuit, called MAD, will be presented as well as a brief

description of the features of the new circuit.

1.4.1 The MAD

The MAD is a full custom ASIC in which the analog front-end electronics for the

muon chambers of CMS barrel has been integrated.

Figure 1.8: Block diagram of the MAD.

This chip has been realised in 0.8 µm

BiCMOS technology and provides 4 iden-

tical chains of amplification, discrimina-

tion and cable driving circuitry.

It also integrates a flexible channel en-

abling/disabling feature and a tempera-

ture probe.

Figure 1.8 shows the block diagram of

the MAD.

By inspecting the figure we are able to

identify the four identical analog chains

mentioned above.

12



1 – Introduction

Each chain consists of a charge preamplifier (PA) followed by a pulse shaper with

its baseline restorer (BLR), a latched discriminator (DISCR + LATCH) comparing

the analog output of the shaper with an external reference voltage value (VTH) and

issuing a standard logic signal, a programmable one-shot stretching the output logic

pulses and finally an output stage able to drive long twisted pair cables with LVDS

compatible levels (LVDS DRIV).

As far as the channel output section operation is concerned, we can add that the

buffered output of the discriminator is capacitively coupled to the one-shot and that

the discriminator differential output, when active, stores the comparator status in

the latch producing a non retriggerable pulse whose width is inversely proportional

to the current sunk from the W CTRL pin, shared by all the channels.

The ASIC also includes some control and monitoring features, namely

. each channel can be disabled at the shaper input resulting in little

crosstalk to neighbours,

. a fast enable/disable feature allows the simulation of tracks perpendic-

ular to the detector,

. an absolute temperature probe is able to detect electronics failures and

monitor environmental changes.

1.4.2 The CMAD

The new readout front-end circuit will be used in the COMPASS RICH upgrade to

read out the signals coming from multi-anode photomultiplier tubes.

There are several important reasons which suggested the changes that charac-

terise the new project and now some of them will be dealt with briefly here to obtain

a general idea of the new circuit features.

From the fabrication process point of view the MAD was realized in 0.8 µm

BiCMOS technology whereas the CMAD is realised in 0.35 µm CMOS technology.

The key point here is that the 0.8 µm BiCMOS technology is obsolete and new

samples of the circuit can no longer be produced in such a technology.

Also the modularity of the circuit is enhanced since the new circuit is provided

with eight channels whereas the old one had only four channels.

Another important new requirement for the circuit is the gain value.

13



1 – Introduction

The MAD was designed to give a gain of 4 mV/fC while the CMAD allows us

to choose between two gain values, the old value of 4 mV/fC, for compatibility with

the old circuit, and the new value of 1.1 mV/fC, optimised for COMPASS.

In fact the signals coming from the new detector will not be as weak as those

the old circuit had been conceived for. For this reason the new circuit has been

designed to give a gain value smaller than the preceding one.

Finally, another demanding design specification concerns the maximum counting

rate.

The new circuit is able to work correctly up to 5 MHz and an enhanced version

of this circuit, capable of working properly up to a rate in the order of 10 MHz, has

already been designed.

On the other hand the old circuit allowed a maximum counting rate approxi-

mately equal to 2 MHz.

14



Chapter 2

The Basics of Front-End Circuits

Signals delivered by particle detectors are normally fairly weak.

The first element of the electronics acquisition chain is therefore a front-end

amplifier whose task is to amplify and filter the incoming signal.

In this chapter we will perform a general analysis of the stages making up a

typical front-end amplifier, namely a CSA and a pulse shaper.

The purpose of this preliminary analysis is to obtain a general understanding of

the behavior of these blocks.

The small-signal behavior of these stages will be dealt with in detail in the

following chapters by performing a detailed analysis of their small-signal equivalent

circuits.

2.1 First Stage Behavior

2.1.1 Collecting Charge

The first stage of a detector readout system consists of a preamplifier mounted as

close as possible to the detector to reduce cable length as well as cable capacitance

which tends to decrease the signal to noise ratio. We know three main categories of

such preamplifiers according to what they are sensitive to, namely current, voltage

or charge.

For our applications a CSA (Charge Sensitive Amplifier) is required because of

its low noise performance and insensitivity to changes in the detector capacitance.

In fact a voltage sensitive amplifier would amplify any voltage proportional to the

15



2 – The Basics of Front-End Circuits

charge produced by the detector and appearing at its input terminals as a voltage

drop across the total input capacitance. The latter consists of circuit input capaci-

tances plus the intrinsic detector capacitance which is quite sensitive to temperature

changes. As a consequence we may observe different input voltage signals even if

the charge produced by the detector is the same, since Vin = Q/Ctot.

To overcome this problem a CSA is used and its schematic diagram is shown in

Fig. 2.1.

+

_

Figure 2.1: Schematic diagram of a charge-sensitive preamplifier.

By inspecting the Figure we can note that a purely capacitive negative feedback

is applied to the basic amplifier causing the stage to act as an integrator. In fact the

basic idea is to integrate the current carried by the incoming pulse on the capacitor

Cf .

To find the relationship between Vout and Iin, Kirchoff’s current law (KCL) can

be applied. Thus from KCL at the input node,

Iin + Vx s Cd + (Vx − Vout) s Cf = 0 (2.1)

Assuming that the core amplifier has a finite low-frequency voltage gain of A together

with a very large bandwidth, an infinite input resistance and a zero output resistance

gives

Vout = A (V+ − V−) ⇒ Vx = −Vout

A
(2.2)

Substituting (2.2) into (2.1) and rearranging gives

Vout

Iin

(s) =
A

s (Cd + Cf) + A s Cf

(2.3)

16



2 – The Basics of Front-End Circuits

When

A s Cf � s (Cd + Cf) ⇒ A � Cd + Cf

Cf

(2.4)

equation (2.3) can be approximated as

Vout

Iin

(s) ' 1

s Cf

(2.5)

From (2.5)

Vout (s) ' 1

Cf

Iin (s)

s
(2.6)

Thus, taking the inverse Laplace transform of equation (2.6) gives

vout (t) ' Q (t)

Cf

(2.7)

which yields in the time domain the approximated output voltage of the CSA.

Let us now suppose that a small input current pulse iin (t) carrying a total charge

Q, as shown in Fig. 2.2(a), is applied to our circuit.

In agreement with equation (2.7) the output voltage of the CSA has the shape

shown in Fig. 2.2(b).

(a) Input current pulse iin (t) carrying a

charge Q.

(b) Output voltage vout (t) (red line) and

its limiting value Q/Cf (green dashed line).

Figure 2.2: Current pulse response of the circuit shown in Fig. 2.1.

Moreover, by inspection of Fig. 2.2 it can be observed that the input current

pulse is similar to a Dirac delta function δ (t) and the output voltage to a step

function u (t).

17



2 – The Basics of Front-End Circuits

This consideration is once again in exact agreement with the fact that the stage,

acting as an integrator, performs the integral of its input signal.

In fact,

δ (t) =
d

dt
(u (t)) (2.8)

2.1.2 Resetting Device

The analysis performed in the previous section has pointed out that in a CSA the

incoming charge is collected by a feedback capacitor Cf .

That charge must be removed to allow the capacitor to collect the charge carried

by the next current pulse, if possible avoiding the new charge being added to the

previous one.

For this purpose a resistive feedback network is required. The feedback network

only consists of a resistance Rf connected in parallel with the capacitance Cf as

shown in Fig. 2.3 and providing a slow discharge of the capacitor.

Figure 2.3: Schematic diagram of a CSA including a feedback resistance Rf .

Figure 2.4(b) shows the typical response of a CSA including a feedback resis-

tance Rf . From a qualitative point of view we can observe that the voltage peak

value will be smaller than the value Q/Cf because the capacitor discharge occurs at

the same time as its charge.

18



2 – The Basics of Front-End Circuits

Thus, the larger the resistance value, the slower the capacitor discharge and the

larger the votage peak value. It approaches Q/Cf only in the limit as Rf → ∞.

(a) Input current pulse iin (t) carrying a

charge Q.

(b) Circuit response vout (t).

Figure 2.4: Pulse response of the circuit shown in Fig. 2.3.

2.2 The Second Stage

In this section we will consider the second stage of our detector front-end circuit.

As shown in the schematic diagram of Fig. 2.5, the second stage can be thought

of as consisting of two main blocks, namely a basic amplifier (OTA, Operational

Transconductance Amplifier) with its feedback network (Rsh, Csh) and a gain stage

assumed to have a high output resistance so that it can be represented by a transcon-

ductor block.

This block feeds back a signal to the input and represents an active feedback

network having a frequency-dependent transfer function f (s). The purpose of this

active feedback is to keep the DC output voltage of the circuit VOUT (the baseline)

approximately equal to the DC reference value Vref .

In fact, the first block too keeps the DC input voltage of the second stage ap-

proximately equal to the DC value V OTA
ref . As a result, performing this function

would cause VOUT to change if the second block was not there.

Furthermore, it should be pointed out that the bandwidth of the feedback block

must be very narrow in order to guarantee that it has essentially zero response to

each pulse. In addition, from a small-signal standpoint this block involves some
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+

_

+

+

_

+

Figure 2.5: Schematic diagram of the second stage.

drawbacks as the rate of the incoming pulses increases. They will be analysed in

detail in the next chapter.

An interesting way of investigating the small-signal behavior of the stage with

regard to the small-signal transfer functions of the two blocks making up the stage,

is to apply the feedback theory to our circuit.

Figure 2.6 displays an ideal feedback configuration consisting of two main blocks

assumed to be unilateral, i. e. the block chacterized by a (s) (the basic amplifier) can

only transmit the signal from the input to the output whereas the block chacterized

by f (s) (the feedback network) can only transmit the signal from the output to the

input and ideally does not load the basic amplifier.

It can be shown that under the above assumptions we obtain

Sout

Sin

=
a (s)

1 + a (s) f (s)
(2.9)

It should be pointed out that in practical feedback configurations the division

into basic amplifier and feedback network is not so easy to perform due to the
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2 – The Basics of Front-End Circuits

+

_

Figure 2.6: Ideal feedback configuration.

bilaterality of the actual amplifiers and the loading effect of the feedback network.

However, by assuming that in the case under examination the ideal feedback

equation applies, we have

T II (s) =
a (s)

1 + a (s) f (s)
(2.10)

where T II (s) is the transfer function of the second stage, a (s) represents the transfer

function of the amplifier block (OTA with its feedback network) and f (s) of the

feedback block (transconductor block).

Thus, by considering the transfer function in the form given by (2.10) we can

see that at low frequencies, where it seems reasonable to assume | a (s) f (s) |� 1,

we have

T II (s) ∼ 1

f (s)
(2.11)

whereas at high frequencies, where we can assume |a (s) f (s) |� 1 due to the very

narrow bandwidth of the transconductor block, we have

T II (s) ∼ a (s) (2.12)

Equation (2.11) shows that the low-pass transfer function f (s) of the transcon-

ductor block achieves an approximated high-pass filter which guarantees output

baseline stabilisation at low frequencies providing a lower gain at these frequencies.

However when the rate of the unipolar incoming pulses increases, a drift of the

output baseline is observed due to the presence of this high-pass filter.

In order to overcome this problem a slew-rate limited non-linear buffer is inserted

before the transconductor block to form a new block which is referred to as BLH

(baseline holder).
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2 – The Basics of Front-End Circuits

This buffer performs the function of dynamically clipping the pulses to be pro-

cessed by the transconductor block (the low-pass filter) in order to strongly reduce

their area.

However, this dynamic attenuation only occurs for fast and large signals, thus

allowing the feedback network to perform its function properly stabilising the low-

frequency baseline fluctuations.

2.3 The Full Circuit

The schematic diagram of the full circuit is shown in Fig. 2.8.

An approximated small-signal analysis of the complete circuit can be performed

by assuming that the output impedance of the first stage as well as the input

impedance of the second stage are negligible.

In fact in this almost ideal case, we have

V I
out ' T I (s) Iin (2.13)

−I II
in ' V I

out

R
(2.14)

Vout ' T II (s) I II
in (2.15)

so that

T (s) ' −T I (s) T II (s)

R
(2.16)

where R here can represent either R1 or R2. These two resistors allow us to set the

gain of the complete circuit as well as to current drive the second stage.

The pulse response of the full circuit will have the shape shown in Fig. 2.7(b).

Finally let us note that Fig. 2.8 also shows a further block (comparator) giving

a digital output signal.

The analysis of this block will not be performed in this thesis. However we can

add that it is essentially a comparator block which compares the analog output of

the full circuit (the circuit consisting of the first and the second stage) with a given

reference value and outputs a binary signal based on the comparison.
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2 – The Basics of Front-End Circuits

(a) Input current pulse iin (t). (b) Circuit response vout (t).

Figure 2.7: Pulse response of the complete circuit.

For binary signal we mean a signal which can have only one of two given values

at any point in time, even if this concept turns out to be too ideal in practice due

to the presence of a transition region between the two binary states.

Thus, due to the presence of this comparator stage, we can say that our circuit

performs a binary read-out, namely it allows us to know only whether an event of a

certain intensity occurred, without giving direct information on its energy.
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Figure 2.8: Schematic diagram of the full circuit.
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Chapter 3

Modelling and Analysis

of the CMAD Architecture

In this chapter we will perform from a small signal point of view a detailed analysis

of the first two stages making up a detector readout system, namely a CSA and a

pulse shaper. In order to obtain an understanding of factors and parameters affecting

circuit behavior, a useful set of relationships stemming from opportunely simplified

analytical models will be derived, in order to check our theoretical hypotheses and

to perform a fast optimisation of the circuit.

Furthermore, the results obtained by using the analytical models will be com-

pared to transistor-level SPICE simulations. Such simulations use the BSIM3V3

models and take into account the complex physics of the devices involved.

Finally, the parameter values required to obtain the several graphs shown in this

chapter were estimated by small signal computer analysis of the actual circuit. This

topic will be dealt with in detail in a specific section of this chapter where will be

shown explicitly the relationships used for setting the parameters involved in our

transfer functions.

3.1 First Stage Analysis

3.1.1 The CSA Model and Behavior

First let us consider the CSA schematic diagram illustrated in Fig. 3.1(a).

Let us observe that in our case the current signal to be processed by the CSA
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3 – Modelling and Analysis of the CMAD Architecture

comes from a single-ended detector so that the generic op amp displayed in Fig. 3.1(a)

should be replaced for purposes of our analysis with a single-input amplifier block.

In fact a high-gain common-source amplifier configuration with active load is used

in the actual circuit. Figure 3.1(b) shows a circuit diagram of this configuration.

Finally let us note that the schematic diagram of Fig. 3.1(a) also includes a

capacitor CL into which all output capacitive loads are lumped.

+

_

(a) (b)

Figure 3.1: (a) Schematic diagram of a CSA including capacitive load and (b) CS con-

figuration achieving the real single-input core amplifier.

Thus, in agreement with the above assumptions, the corresponding small-signal

equivalent circuit shown in Fig. 3.2 is obtained.

From KCL at the input node,

Iin + Vin s Cd + (Vin − Vout) s Cf = 0 (3.1)

From KCL at the output node, assuming Iout = 0,

gm Vin +
Vout

RL

+ Vout s CL + (Vout − Vin) s Cf = 0 (3.2)

The equations (3.1) and (3.2) are a system of linear equations which can also be

stated in matrix form as

Y · V = I (3.3)
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3 – Modelling and Analysis of the CMAD Architecture

Figure 3.2: Small-signal equivalent circuit of the CSA including capacitive load.

where V is the vector of variables.

Matrix form can often be convenient for solving linear systems by means of

computer programs.

Thus, writing the system down in this form gives




s (Cd + Cf) −s Cf

gm − s Cf
1

RL

+ s (CL + Cf)





[

Vin

Vout

]

=

[

−Iin

0

]

(3.4)

Solving (3.4) for Vout and rearranging gives

Vout

Iin

(s) =
RL (gm − s Cf)

s [Cd + Cf (1 + gm RL) + s RL (Cd Cf + Cd CL + Cf CL)]
(3.5)

The transfer function (3.5) can be used now for calculating the pulse response

of the circit under consideration.

It can be shown that by assuming initial conditions equal to zero, the response

y (t) of a linear system to an input excitation e (t) can be written in the time domain

as

y (t) =

∫

∞

0

h(t − τ) e(τ) dτ (3.6)

where h is the system transfer function.

The same result as in (3.6) can be given in the frequency domain by using the

Laplace transform technique and applying the properties of Laplace transform to

obtain

Y (s) = H (s) E (s) (3.7)

where Y (s) and E (s) represent the Laplace transforms of the response and the

excitation respectively and H (s) is the Laplace transform of the system transfer
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3 – Modelling and Analysis of the CMAD Architecture

function. All these functions are expressed in the domain of the complex frequency

s = σ + j ω.

We note that letting e (t) = δ (t) implies E (s) = 1, so that

Y (s) = H (s) (3.8)

From (3.8) we deduce that H (s) represents the pulse response transform as well.

Let us now suppose that a small input current pulse iin (t) carrying a charge

Q = 4 fC, as shown in Fig. 3.3(a), is applied to our circuit and let Iin (s) represent

its Laplace transform.

Thus, from (3.7),

Vout (s) = H (s) Iin (s) (3.9)

where

H (s) =
Vout

Iin

(s) (3.10)

Setting the model parameters as listed below and performing the inverse Laplace

transform of (3.9) gives the output voltage plotted in Fig. 3.3(b).

. Gm = 14.54 mS

. RL = 903.7 kΩ

. Cd = 10 pF , Cf = 784.32 fF , CL = 382 fF

Referring to Fig. 3.3(b) we can finally note that the output voltage approaches

the constant value v = 5.1 mV in exact agreement with what (2.7) predicts, i.e.

vout '
Q

Cf

=
4 fC

784.32 fF
' 5.099 mV

which means that all the charge carried by the pulse has been integrated onto the

feedback capacitance Cf .

3.1.2 Resetting Device

The behavior of a charge-sensitive amplifier was described through the analysis

performed in the previous section, pointing out that the incoming charge is collected
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(a) Input current pulse iin (t).
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(b) Output voltage vout (t) (red line) and

its limiting value (green dashed line).

Figure 3.3: Current pulse response of the circuit shown in Fig. 3.1(a).

by the feedback capacitor Cf . Now that charge must be removed to allow the

capacitor to collect the charge carried by the next current pulse, if possible avoiding

the new charge being added to the previous one. For this purpose a resistive feedback

network is required. The feedback network only consists of a resistance Rf assumed

at first to be connected in parallel with the capacitance Cf as shown in Fig. 3.4 and

providing a fairly slow discharge of the capacitor.

+

_

Figure 3.4: Schematic diagram of a CSA including a feedback resistance Rf .

However, we will show that the above assumption about the way to connect Rf

to the rest of the circuit involves some drawbacks affecting important aspects of

circuit performance.
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Thus, let us consider the small-signal equivalent circuit illustrated in Fig. 3.5

and referred to the schematic diagram of Fig. 3.4.

Figure 3.5: Small-signal equivalent circuit of a CSA including a feedback resistance Rf .

As stated above the feedback network is represented by Rf and this kind of

feedback amplifier connection is called shunt-shunt feedback because the feedback

network shunts the output of the basic amplifier sampling Vout and also shunts

the input feeding back a proportional current. One possible way to analyse the

feedback network behavior is to model it as a two-port equivalent network having

four terminals and four port variables as shown in Fig. 3.6(a). We can set one

independent variable at each port whereas the other variables will depend on the

network and on the independent variables.

(a) Complete circuit. (b) Simplified circuit (y21 = 0).

Figure 3.6: y-parameter two-port equivalent circuits for representing the feedback net-

work.

Setting the terminal voltages as independent variables gives

I1 = y11 V1 + y12 V2 (3.11)

I2 = y21 V1 + y22 V2 (3.12)
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where

y11 =
I1

V1

∣

∣

∣

∣

V2=0

y12 =
I1

V2

∣

∣

∣

∣

V1=0

(3.13)

y21 =
I2

V1

∣

∣

∣

∣

V2=0

y22 =
I2

V2

∣

∣

∣

∣

V1=0

(3.14)

It is interesting to note that an ideal feedback network should shunt the output

with y22 = 0 and the input with y22 = 0. In practice it causes loading at the

input and at the output of the basic amplifier. Even y21 should be equal to zero,

assuming the network is only able to feed back the signal from the output to the

input. However, we can almost always assume that y21 of the feedback network is

negligible compared to the analogous parameter of the basic amplifier. As a result

we can use the model shown in Fig. 3.6(b).

Let us now calculate the y-parameters for the case under consideration. By

inspecting Fig. 3.7 and using (3.13) and (3.14) we find

y11 =
1

Rf

y22 =
1

Rf

(3.15)

y12 = − 1

Rf

(3.16)

Figure 3.7: Feedback net-

work for y parameters calcu-

lation.

Thus, the small-signal equivalent circuit illustrated

in Fig. 3.5 can be redrawn as shown in Fig. 3.8. The

whole circuit can be thought of as consisting of a

new basic amplifier allowing for loading of the non-

ideal feedback network and an ideal feedback network

which does not load it.

As a result we can see by direct inspection that

the low-frequency open loop voltage gain of the basic

amplifier has been decreased by the feedback resistance due to its loading effect. In

fact, before connecting Rf , we had

Av =
Vout

Vin

∣

∣

∣

∣

Iout=0

= −Gm RL (3.17)

at low-frequency, while we now have

Av =
Vout

Vin

∣

∣

∣

∣

Iout=0

= −Gm (RL ‖ Rf) . −Gm Rf � −Gm RL (3.18)
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Figure 3.8: Small-signal equivalent circuit of Fig. 3.5 redrawn from a feedback network

two-port equivalent circuit standpoint.

assuming RL � Rf .

In order to overcome the problem we have just pointed out, we can modify the

circuit schematic diagram of Fig. 3.4 by using a voltage buffer as shown in Fig. 3.9.

Furthermore this solution allows us to avoid a direct coupling between Cf and other

input capacitances of the following stage.

+

_

Figure 3.9: Schematic diagram of a CSA including a feedback resistance Rf and a voltage

buffer B0.

From a small-signal standpoint the corresponding equivalent circuit is shown in

Fig. 3.10.

From KCL at the input node,

Iin + Vin s Cd + (Vin − V0) s Cf +
(Vin − Vout)

Rf

= 0 (3.19)

From KCL at the internal node (node 1),

(V0 − Vin) s Cf + Gm Vin + V0

(

s CL +
1

RL

)

= 0 (3.20)

32



3 – Modelling and Analysis of the CMAD Architecture

+

Figure 3.10: Small-signal equivalent circuit of a CSA including a feedback resistance Rf

and a voltage buffer B0.

From KCL at the output node,

(Vout − Vin)

Rf

+
(Vout − B0 V0)

Ro

− Iout = 0 (3.21)

Writing down in matrix form the system consisting of the simultaneous equations

(3.19), (3.20), (3.21), yields















1

Rf

+ s (Cd + Cf) −s Cf − 1

Rf

Gm − s Cf
1

RL

+ s (Cf + CL) 0

− 1

Rf

−B0

Ro

1

Rf

+
1

Ro





















Vin

V0

Vout






=







−Iin

0

Iout






(3.22)

Assuming Iout = 0, solving (3.22) for Vout and rearranging gives

T I (s) =
Vout

Iin

(s) =
(B0 Gm Rf RL − Ro) − RL [B0 Cf Rf + Ro (Cf + CL)] s

d0 + d1 s + d2 s2
(3.23)

where



















d0 = 1 + B0 Gm RL

d1 = Rf [Cf (1 + Gm RL) + Cd] + RL [Cf (1 − B0 + Gm Ro) + CL] +

+ Ro (Cd + Cf)

d2 = (Rf + Ro) RL (Cd Cf + Cd CL + Cf CL)

(3.24)
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3.1.3 Pole Splitting

As we have seen earlier by studying the behavior of the CSA, the capacitor Cf

performs the important function of collecting the incoming charge carried by the

signal current. Although this is undoubtedly its primary function, we will show

that it contributes in a significant way to the phenomenon of pole splitting as well.

In general, performing the splitting of the two low-frequency poles of a circuit can

play an important role in solving the problem of its compensation.

In order to illustrate the pole splitting performed by Cf , we will plot a locus of

the poles of the transfer function given by (3.23) as the value Cf of the feedback

capacitance changes.

To carry out a hand analysis that allows us to obtain some useful expressions for

pole position, let us examine the transfer function T I (s). Since it can be written in

the form

T I (s) =
C (s)

A (s) + Cf B (s)
(3.25)

the poles of T I (s) can be found by solving

A (s) = 0 (3.26)

when Cf = 0, and

B (s) = 0 (3.27)

in the limit as Cf → ∞.

Thus, by collecting the terms involving Cf in the denominator of T I (s) we find

A (s) = (1 + B0 Gm RL) + (Rf Cd + RL CL + Ro Cd) s +

+ [(Rf + Ro) RL Cd CL] s2

= a0 + a1 s + a2 s2 (3.28)

and

B (s) = [(Rf + Ro) (1 + Gm RL) + RL (1 − B0)] s +

+ [(Rf + Ro) RL (Cd + CL)] s2

= b1 s + b2 s2

= s (b1 + b2s) (3.29)
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Substituting (3.29) in (3.27) and solving the equation for the poles p1, p2 yields

p1 = 0 (3.30)

and

p2 = −b1

b2

= −(Rf + Ro) (1 + Gm RL) + RL (1 − B0)

(Rf + Ro) RL (Cd + CL)
(3.31)

Equations (3.30) and (3.31) give the limiting values for the poles as Cf → ∞.

Let us point out that the poles are real in this case.

Furthermore, relationship (3.31) for the nondominant pole p2 can be approxi-

mated by

p2 ' − Rf Gm RL

Rf RL (Cd + CL)
= − Gm

(Cd + CL)
(3.32)

assuming that Rf � Ro, Gm RL � 1 and B0 . 1, which is in agreement with the

model parameter values referring to the actual circuit and listed below:

. Gm = 14.54 mS

. Rf = 16.408 kΩ , RL = 903.7 kΩ , Ro = 166.5 Ω

. Cd = 10 pF , Cf = 784.32 fF , CL = 382 fF

. B0 = 0.81

Let us now examine the limiting case Cf = 0. Equation (3.26) with A (s) given

by (3.28) is to be solved to obtain the poles p1 and p2. However, since this poles

might be complex we prefer not to give an approximated expression for the poles in

this case, recalling that in general the quadratic formula must be used.

In fact, by inspecting Fig. 3.11 which shows the locus of the poles of the circuit

of Fig. 3.10 calculated by Mathematica program as Cf is increased from zero, we

can see that the poles are just complex for the Cf starting value.

Now, it could be interesting to find an approximate expression for the poles in

the case when Cf is large enough to cause them to be real.

Thus, under the above assumption, we refer to the denominator of the transfer

function (3.23), which is

D (s) = d0 + d1 s + d2 s2 = d0

(

1 +
d1

d0

s +
d2

d0

s2

)

(3.33)
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Figure 3.11: Locus of the poles of the circuit of Fig. 3.10 as Cf (pF) is increased from

zero (up to Cmax
f = 1.4 pF in steps of δCf = 70 fF).

with the coefficients given by (3.24). It can be written as

D (s) = d0

(

1 − s

p1

) (

1 − s

p2

)

= d0

[

1 − s

(

1

p1

+
1

p2

)

+
s2

p1 p2

]

(3.34)

where p1 and p2 are the poles of the circuit.

They can be easily found by concentrating on the quadratic term in parenthesis

in (3.33) and (3.34), if we assume they are widely separated in addition to being

real. Thus, assuming p1 is the dominant pole gives

1 − s

(

1

p1

+
1

p2

)

+
s2

p1 p2

' 1 − s

p1

+
s2

p1 p2

(3.35)

By equating coefficients in (3.33) and (3.35), we find

p1 ≈ − 1 + B0GmRL

Rf [Cf (1 + GmRL) + Cd] + RL [Cf (1 − B0 + GmRo) + CL] + Ro (Cd + Cf)

(3.36)
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and

p2 ≈ −Rf [Cf (1 + GmRL) + Cd] + RL [Cf (1 − B0 + GmRo) + CL] + Ro (Cd + Cf)

(Rf + Ro) RL (CdCf + CdCL + CfCL)

(3.37)

These expressions can be further approximated by assuming that Rf � Ro,

B0 . 1, Gm RL � 1 and the term Rf Cf Gm RL due to the Miller effect is dominant

compared to the other terms, which is once again in agreement with the model

parameter values previously given.

Finally we can write

p1 ' − B0 Gm RL

Rf Cf Gm RL

= − B0

Rf Cf

' − 1

Rf Cf

(3.38)

and

p2 ' − Rf Cf Gm RL

Rf RL [Cf (Cd + CL) + Cd CL]
= − Cf Gm

Cf (Cd + CL) + Cd CL

(3.39)

We can also note that in the limit as Cf → ∞ they agree exactly with the limiting

values shown in (3.30) and (3.32).

After investigating what occurs to the poles of the circuit under consideration as

Cf changes, it may be interesting to observe the shape of the locus of the poles for

varying the load capacitance CL and the detector capacitance Cd, given the other

parameter values. Although a detailed analysis to obtain approximated expressions

for the poles in the limit as CL = 0 and CL → ∞ as well as Cd = 0 and Cd → ∞
can be carried out by following the same steps which led us to the expressions (3.30)

and (3.31), these steps will not be shown here. However, a numerical analysis of the

roots of the denominator of the transfer function for varying CL and Cd gives the

graphical results shown in Fig. 3.12 and in Fig. 3.13, respectively.

By inspecting Fig. 3.12(a) we can see that increasing CL causes the poles to

converge till they leave the real axis to become complex. Only for large values of CL

do they become real again, splitting apart as CL is further increased (Fig. 3.12(b)).

The same occurs as Cd is increased, which gives rise to the root-locus shown in

Fig. 3.13 whose shape is similar to that of the case described earlier.
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Figure 3.12: Locus of the poles of the circuit of Fig. 3.10 as CL is increased from zero.

3.1.4 Frequency Analysis of the First Stage

Transfer Function

The calculation of the transfer function of the first stage was already carried out in

the previous section. However, for convenience we show again the results given in

(3.23)

T I (s)

∣

∣

∣

∣

Iout=0

=
(B0 Gm Rf RL − Ro) − RL [B0 Cf Rf + Ro (Cf + CL)] s

d0 + d1 s + d2 s2
(3.40)

and in (3.24)



















d0 = 1 + B0 Gm RL

d1 = Rf [Cf (1 + Gm RL) + Cd] + RL [Cf (1 − B0 + Gm Ro) + CL] +

+ Ro (Cd + Cf)

d2 = (Rf + Ro) RL (Cd Cf + Cd CL + Cf CL)

(3.41)
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Figure 3.13: Locus of the poles of the circuit of Fig. 3.10 as Cd is increased.

The analysis of equation (3.40) indicates that the circuit has a positive real zero

with magnitude

| z1 |=
B0 Gm Rf RL − Ro

RL [B0 Cf Rf + Ro (Cf + CL)]
(3.42)

Assuming Rf and RL are much larger than Ro allows us to approximate the above

expression to obtain

| z1 | '
B0 Gm Rf RL

B0 Cf Rf RL

=
Gm

Cf

' 18.54× 109 s−1 ⇒ 2.95 GHz (3.43)

Thus, we can see that the effect of this zero is negligible except at very high fre-

quencies.

Equation (3.40) also shows that the transfer function has two poles whose magni-

tude can be estimated by using the approximated expressions given in (3.38), (3.39)

and discussed in detail in that section.

Then, using the results obtained there yields

| p1 | '
1

Rf Cf

' 77.7× 106 s−1 ⇒ 12.37 MHz (3.44)
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and

| p2 | '
Cf Gm

Cf (Cd + CL) + Cd CL

' 953.3× 106 s−1 ⇒ 151.72 MHz (3.45)

Furthermore we can calculate the low-frequency transimpedance gain by analysing

(3.40) in the limit as s → 0.

Assuming Gm RL � 1 and B0 ' 1, we obtain

K =
B0 Gm Rf RL − Ro

1 + B0 Gm RL

≈ Rf = 16.408 kΩ (3.46)

Now, writing the transfer function down as

T I (s) = K

(

1 − s

z1

)

(

1 − s

p1

) (

1 − s

p2

) (3.47)

assuming the poles to be widely separated and the zero negligible as stated above

and setting s = jω in (3.47), shows that the gain is 3 dB below its low-frequency

value at a frequency ω−3 dB = | p1 |, since, under these assumptions

T I (jω−3 dB) ' K/ (1 + j) (3.48)

which affords | T I (jω−3 dB) |' K/
√

2 as well as Arg
[

T I (jω−3 dB)
]

' −45◦.

It can be shown that at frequencies above the dominant pole the gain falls at

20 dB/dec and, above the second most dominant pole, the gain roll-off is further

increased by 20 dB/dec.

The preceding considerations are in agreement with the curves plotted in Fig. 3.14

which show the magnitude and phase of T I (s) |s=jω versus frequency, superimposing

the graphic results from our small-signal analytical model (red and blue lines) on

those from a transistor-level model (green and purple lines).

Fig. 3.14(b) shows that our circuit, at low frequency, is a good transresistance

amplifier whose gain approaches the value of the feedback resistance as predicted

by (3.46).

Furthermore, by inspection of the figure we can also realise that our model is

able to represent accurately the circuit behavior in a fairly wide range of frequencies.

However it is apparent that a lot of parasitic capacitance which we did not take into

account, plays an increasingly significant role at high frequencies, thus providing in

that range a larger difference between the results arising from the two models.
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Figure 3.14: (a) Magnitude in dB-Ω, (b) magnitude in Ω and (c), (d) phase in degrees

of T I (jω) versus frequency (Red and blue lines: analytical model. Green and purple lines:

transistor-level model).

Finally, the effect of the two negative real poles as well as the positive real

zero on the magnitude of the transfer function can be understood from a graphical

standpoint by inspecting Fig. 3.15 which shows the magnitude of T I (s) as a function

of σ and ω.

The two negative real poles produce two very strong peaks (approaching infinity)

in the magnitude of T I (s) at (σ = p1, Log[f ] → −∞) and (σ = p2, Log[f ] → −∞).

Similarly the positive zero produces a peak at (σ = z1, Log[f ] → −∞). These peaks

give rise to the particular shape of the magnitude of T I (s) in the range of freqencies

illustrated in Fig. 3.15. We can also point out that the section obtained by setting

σ = 0 agrees exactly with the curve shown in Fig. 3.14(a).
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setting σ = 0 (black line).

Input Impedance

Let us refer to the small-signal equivalent circuit of Fig. 3.16 in order to find its

input impedance. For purposes of our analysis the current source Iin can be thought

of as the test current source required to perform the calculation and the voltage Vin

as the voltage drop across it.

+

Figure 3.16: Small-signal equivalent circuit of a CSA including a feedback resistance Rf

and a voltage buffer B0.

Thus, solving (3.22) by assuming It = −Iin, Vt = Vin and Iout = 0 gives

Z I
in (s) =

Vin

−Iin

∣

∣

∣

∣

Iout=0

=
Vt

It

=
(Rf + Ro) [1 + RL (Cf + CL) s]

d0 + d1 s + d2 s2
(3.49)
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The magnitude and phase of Z I
in (s) |s=jω are shown in Fig. 3.17.
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Figure 3.17: (a) Magnitude in dB-Ω, (b) magnitude in Ω and (c), (d) phase in degrees of

ZI
in (jω) versus frequency (Red and blue lines: analytical model. Green and purple lines:

transistor-level model).

The denominator of (3.49) is the same as that of the transfer function, which

implies that the coefficients involved are still given by (3.41) as well as the poles by

(3.44) and (3.45), as discussed in the previous paragraph.

Equation (3.49) also shows that the input impedance has a negative real zero at

low frequency whose magnitude can be estimated by substituting usual parameter

values, to give

| z1 |=
1

RL (Cf + CL)
' 948.76× 103 s−1 ⇒ 151 kHz (3.50)
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In order to gain an insight into the frequency behavior of the input impedance

whose value must be set with particular care as will be explained later, let us perform

a simpified analysis of equation (3.49) by varying the frequency.

Assuming Ro ' 0 and B0 ' 1 (ideal voltage buffer) as well as Gm RL � 1 gives

Z I
in (s) ' Rf [1 + RL (Cf + CL) s]

d̃0 + d̃1 s + d̃2 s2
(3.51)

where










d̃0 = Gm RL (' 13140)

d̃1 = Rf Cf Gm RL + Rf Cd + RL CL (' 169.1 µs + 164.1 ns + 345.2 ns)

d̃2 = Rf RL (Cd Cf + Cd CL + Cf CL)
(

' 0.177 (µs)2)
(3.52)

Further assuming that Rf Cf Gm RL dominates in d̃1 (which is true in the case

under examination) leads us to write

Z I
in (s) ' Rf [1 + RL (Cf + CL) s]

(Gm RL) + (Rf Cf Gm RL) s + [Rf RL (Cd Cf + Cd CL + Cf CL)] s2
(3.53)

Thus in the limit as s → 0 we have

Z I
in (0) ' Rf

Gm RL

(' 1.25 Ω) (3.54)

which is in exact agreement with the fact that the circuit under consideration is a

transresistance amplifier at low frequency.

In fact such an amplifier can be thought of as consisting of a basic amplifier whose

voltage gain is Av and a feedback resistance Rf connected around this amplifier.

It can be shown that the input impedance of this simplified configuration is

Rin =
Rf

(1 − Av)
(3.55)

Thus, since the voltage gain of the basic amplifier is Av = −Gm RL in the case

under examination, we have

Rin =
Rf

(1 + Gm RL)
' Rf

Gm RL

(3.56)

which is the same result as in (3.54).

As | s | is increased from zero, the frequency reaches a value such that

RL (Cf + CL) | s |= 1 ⇒ | s |= 1

RL (Cf + CL)
≡| z1 | (3.57)
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which represents the frequency of the zero of the input impedance.

Increasing the frequency above this value allows us to approximate the numerator

of (3.53) by dropping the constant “1” as well as the denominator by dropping the

term [Rf RL (Cd Cf + Cd CL + Cf CL)] s2 to give

Z I
in (s) ' Rf RL (Cf + CL) s

(Gm RL) + (Rf Cf Gm RL) s
| z1 |<| s |≤| p1 | (3.58)

which allows us to estimate the frequency at which

Rf Cf Gm RL | s |= Gm RL ⇒ | s |= 1

Rf Cf

≡| p1 | (3.59)

which represents the frequency of the dominant pole of the input impedance.

Now, further increasing the frequency above | p1 | allows us to drop the term

Gm RL and assuming that the term [Rf RL (Cd Cf + Cd CL + Cf CL)] s2 is still neg-

ligible gives

Z I
in (s) ' Rf RL (Cf + CL) s

Rf Cf Gm RL s
=

1

Gm

Cf + CL

Cf

(' 102.3 Ω) | s |>| p1 | (3.60)

which yields the approximated amplitude of the peak shown in Fig. 3.17(b).
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Figure 3.18: Magnitude in Ω of the

input impedance when Cf = 0.

By further inspecting this figure we can

see that the above value experiences no sig-

nificant variations over a fairly wide range

of frequencies corresponding to those of the

signal.

Moreover equation (3.60) can be very use-

ful from a design point of view since it allows

us to set properly the value of the involved

circuit components in order to obtain the de-

sired impedance value.

Finally let us note that the feedback capacitance Cf also performs the function

of limiting the peak amplitude of the input impedance, as shown in Fig. 3.18 which

displays the shape of the input impedance in the limit as Cf → 0.

Moving on with our analysis we can write

Z I
in (s) ' Rf RL (Cf + CL) s

(Rf Cf Gm RL) s + [Rf RL (Cd Cf + Cd CL + Cf CL)] s2
| s |.| p2 | (3.61)
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which allows us to estimate the frequency at which

(Rf Cf Gm RL) s = [Rf RL (Cd Cf + Cd CL + Cf CL)] s2 (3.62)

namely

| s |= Cf Gm

Cf (Cd + CL) + Cd CL

≡| p2 | (3.63)

which represents the frequency of the non-dominant pole of the input impedance.

Finally in the limit as | s |→ ∞ we can write

Z I
in (s) ' Rf RL (Cf + CL) s

[Rf RL (Cd Cf + Cd CL + Cf CL)] s2
' 1

s Cd

| s |→ ∞ (3.64)

by assuming Cf CL

(

' 0.3 (pF)2) negligible with respect to Cd Cf

(

' 7.8 (pF)2) and

Cd CL

(

' 3.82 (pF)2).

Let us note that all the foregoing results agrees exactly with those obtained in

the previous sections by following a different approach.

As mentioned earlier, the value of the input impedance turns out to be particu-

larly significant in order to design the first stage of the full circuit since it must collect

the fast current signal coming from the PMTs and travelling down a transmission

line exhibiting its own characteristic impedance (whose value is 100 Ω).

In addition, the low value of the input impedance strongly reduces the circuit

sensitivity to pick-up phenomenon.

Thus, it is apparent that the signal transmission can be greatly improved avoiding

the impedance mismatch between the line and the load which is just represented by

the input impedance of the first stage. This mismatch may cause reflection of part

of the incident wave at the receiving ends of the line.

To obtain a quantitative understanding of the preceding considerations we will

present some interesting relationships related to the transmission lines.

Some common types of transmission lines can be a two-wire line, a parallel-strip

line or a coaxial cable.

Let us consider for simplicity two parallel conductors connecting a generator

to a load. The signal travelling down the line cannot reach the load immediately

because it propagates at a finite velocity depending on the medium surrounding the

conductors.

46



3 – Modelling and Analysis of the CMAD Architecture

For signals varying sinusoidally with time, the distance covered in a cycle is

λ = v T =
v

f
(3.65)

where we can assume that v is nearly the velocity of light in free space for air-

insulated lines, namely 3 × 108 m s−1.

The key point here is that transmission-line theory must be used when the length

of the line is comparable to λ/4.

It should be pointed out that also the distance between conductors plays an im-

portant role in the allowable transmission modes of the travelling wave. The most

important mode is termed principal mode which means that the electric and mag-

netic fields are perpendicular to each other and to the direction of the conductors.

Higher modes can exist when the frequency is so high that λ/4 is comparable to the

distance between conductors.

The most important constants of a transmission line are its distributed induc-

tance (L̃) and capacitance (C̃) as well as its conductor resistance per unit length (R̃)

and insulator conductance per unit length (G̃) which model the non-ideal behavior

of conductors and insulators. Although these line constants are distributed along

the line, we can approximately allow for their effect by applying lumped-constant

theory to the several short sections of length ∆z that the line can be thought to

consist of.

Thus, applying KVL to the short line section shown in Fig. 3.19(a) by assuming

that v = v (z, t) and i = i (z, t) represent the instantaneous voltage and current of

the line, gives

v − (v + ∆v) = −∆v = −∂v

∂z
∆z =

(

R̃∆z
)

i +
(

L̃∆z
) ∂i

∂t
(3.66)

and applying KCL to the short line section shown in Fig. 3.19(b) gives

i − (i + ∆i) = −∆i = − ∂i

∂z
∆z =

(

G̃∆z
)

v +
(

C̃∆z
) ∂v

∂t
(3.67)

Finally, dividing (3.66) and (3.67) by ∆z yields

−∂v

∂z
= R̃ i + L̃

∂i

∂t
(3.68)

and

− ∂i

∂z
= G̃ v + C̃

∂v

∂t
(3.69)
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(a) Modelling of the induc-

tive behavior of a short sec-

tion ∆z with loss.

(b) Modelling of the ca-

pacitive behavior of a short

section ∆z with loss.

Figure 3.19: Approximate representation of a short section ∆z of a transmission line.

The foregoing equations have been derived under the assumption that the line

is a uniform line, which means the constants R̃, L̃, G̃, C̃ experience no variations

for varying z and t.

Now, by assuming for simplicity that the line is lossless (R̃ = G̃ = 0), deriving

(3.68), (3.69) and rearranging gives

∂2v

∂z2
− L̃ C̃

∂2v

∂t2
= 0 (3.70)

and

∂2i

∂z2
− L̃ C̃

∂2i

∂t2
= 0 (3.71)

which are one-dimensional forms of the wave equation whose solutions, letting c =

1/
√

L̃ C̃ are known to be of the form

v (z, t) = v+ (z − c t) + v− (z + c t) (3.72)

and

i (z, t) = i+ (z − c t) + i− (z + c t) (3.73)

where v+ and i+ represent the incident voltage and current wave whereas v− and i−

the reflected voltage and current wave.

By considering at first only the incident wave and letting ξ = z − c t, we have

from (3.68) (with R̃ = 0)

d

dξ

(

v+ − L̃ c i+
)

= 0 (3.74)
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and thus

v+ = L̃ c i+ + constant (3.75)

Neglecting the constant gives

v+ = L̃ c i+ =

√

L̃

C̃
i+ = R0 i+ (3.76)

The important quantity

R0 =

√

L̃

C̃
(3.77)

is termed characteristic resistance of the line.

In a similar way we find

v− = −R0 i− (3.78)

Hence

v (z, t) = v+ (z − c t) + v− (z + c t) (3.79)

and

R0 i (z, t) = v+ (z − c t) − v− (z + c t) (3.80)

Finally we are able to show that a line terminated in its characteristic impedance

(correctly terminated) is a line with no reflections. In fact, assuming z = 0 is the

point where the load is connected to the line provides the constraint

v (0, t) = R0 i (0, t) (3.81)

which implies

v (0, t) = v+ (0, t) , i (0, t) = i+ (0, t) (3.82)

Thus, for all z,

v (z, t) = v+ (z − c t) , R0 i (z, t) = v+ (z − c t) (3.83)
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Output Impedance

Let us again refer to the small-signal equivalent circuit of Fig. 3.10 in order to find

its output impedance. Let Iout represent the current that flows in the output node

when the output is driven by a voltage Vout.

Thus, solving (3.22) by assuming It = Iout, Vt = Vout and Iin = 0 gives

Z I
out (s) =

Vout

Iout

∣

∣

∣

∣

Iin=0

=
Vt

It

=
Ro (1 + n1 s + n2 s2)

d0 + d1 s + d2 s2
(3.84)

where the coefficients of s and s2 in the numerator are
{

n1 = Rf [Cd + Cf (1 + Gm RL)] + RL (Cf + CL)

n2 = Rf RL (Cd Cf + Cd CL + Cf CL)
(3.85)

and the coefficients in the denominator are still given by (3.41).

Hence, the poles of the output impedance are the same as those of the transfer

function and the input impedance, which implies that their estimates too are still

given by (3.44) and (3.45).

By concentrating now on the quadratic term in the numerator of (3.84) we can

easily write it as

(

1 − s

z1

) (

1 − s

z2

)

= 1 − s

(

1

z1

+
1

z2

)

+
s2

z1 z2

(3.86)

where z1 and z2 are the zeros of the output impedance.

Then, assuming they are real and widely separated (which is true in the case

under consideration) gives

1 − s

(

1

z1

+
1

z2

)

+
s2

z1 z2

' 1 − s

z1

+
s2

z1 z2

(3.87)

where z2 is assumed to have the largest magnitude value.

By equating the coefficients in (3.87) and in the numerator of (3.84), we find

z1 ≈ − 1

Rf [Cd + Cf (1 + Gm RL)] + RL (Cf + CL)
(3.88)

and

z2 ≈ −Rf [Cd + Cf (1 + Gm RL)] + RL (Cf + CL)

Rf RL (Cd Cf + Cd CL + Cf CL)
(3.89)
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Figure 3.20: (a) Magnitude in dB-Ω, (b) magnitude in Ω, (c) magnitude in dB-Ω showing

the low-frequency zero and (d) phase in degrees of Z I
out (jω) versus frequency (Red and

blue lines: analytical model. Green and purple lines: transistor-level model).

from which we obtain, in our case,

| z1 | ' 5.87 × 103 s−1 ⇒ 934.4 Hz (3.90)

and

| z2 | ' 960.23× 106 s−1 ⇒ 152.82 MHz (3.91)

It may also be interesting to analyse the behavior of the output impedance in

the limit as s → 0 and s → ∞.

By referring to equation (3.84) we obtain respectively

Z I
out (0) =

Ro

1 + Gm RL

(' 0.0127 Ω ⇒ −37.9 dB-Ω) (3.92)
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and

Z I
out (s) =

Ro Rf

Ro + Rf

= Ro ‖ Rf (' 164.8 Ω ⇒ 44.34 dB-Ω) s → ∞ (3.93)

The preceding analysis can be verified by direct inspection of Fig. 3.20 which

shows the magnitude and phase of Z I
out (s) |s=jω.

In particular, Fig. 3.20(c) displays the effect of the low-frequency zero whereas

Fig. 3.20(a) and Fig. 3.20(b) allow us to see that the non-dominant real pole p2 is so

near to the real zero z2 (as predictable by the comparison of (3.91) and (3.45)) that

an almost total compensation of their effect occurs in the magnitude of Z I
out (jω)

causing its shape to be very similar to that of a function having one low-frequency

zero and one pole only.

Finally, it should be pointed out that at high frequencies the behavior of the

output impedance predicted by our analytical model deviates from the real one

because our model does not allow for all the parasitic capacitances of the circuit.

In particular, the output impedance of the buffer has been modelled by means of

a resistor suitable for representing the behavior of the output impedance only over

a frequency range which certainly does not include high or very high frequencies.

Reverse Transmission

By referring again to the small-signal equivalent circuit of Fig. 3.10 let us now

determine the circuit reverse transimpedance which allows us to estimate whether

and to what extent a current signal can propagate back from the output to the input

of our amplifier.

Thus, solving (3.22) for Vin by assuming Iin = 0 and rearranging gives

T I
rev (s) =

Vin

Iout

∣

∣

∣

∣

Iin=0

=
Ro [1 + RL (Cf + CL) s]

d0 + d1 s + d2 s2
(3.94)

Equation (3.94) shows that the reverse transfer function has a negative real zero

at low frequency whose magnitude is

| z1 |=
1

RL (Cf + CL)
' 948.76× 103 s−1 ⇒ 151 kHz (3.95)

as well as the same two poles as the forward transfer function, still given by (3.44)

and (3.45).
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Figure 3.21: (a) Magnitude (dB-Ω) and (b) phase (degrees) of T I
rev (jω) versus frequency.

Figure 3.21 shows the magnitude and phase of T I
rev (s) |s=jω. The considerations

stated in the preceding subsection about the suitability of our model for representing

the high-frequency behavior of the output impedance with adequate accuracy, still

apply in this case.

However it should be highlighted that the order of magnitude of the reverse

transmission is very small compared to that of the forward signal transmission,

which suggests that we could consider the amplifier unilateral, as it often occurs in

many practical cases.

3.1.5 Pulse Response

Let us consider the circuit response to a small input current pulse iin (t) carrying a

charge Q = 4 fC, as shown in Fig. 3.22(a).

A detailed analysis of the theoretical steps which lead us to find the circuit time

response by using Laplace transform has already been performed in subsection 3.1.1

and the results obtained there can be used here.

Thus, from (3.9) by letting H (s) = T I (s) we have

V I
out (s) = T I (s) Iin (s) (3.96)

where T I (s) is given in (3.40).

Taking the inverse Laplace transform of (3.96) leads to the graphic result shown

in Fig. 3.22(b). From an examination of the graph we can appreciate the exact

agreement between the response that our model predicts and its real shape.
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Figure 3.22: Pulse response of the circuit shown in Fig. 3.9.

3.1.6 The Actual Circuit and the Parameter Estimate

In this subsection the actual circuit schematic diagram of the first stage of the full

front end circuit will be taken into consideration in order to obtain an understanding

of its behavior in relation to the model used for representing it and widely described

earlier in this chapter. In particular, the relationships used for estimating the value

of the small-signal parameters involved in the equations given so far will be shown

in detail.

By inspecting Fig. 3.23 we can see that a cascode amplifier (M1, M2) with a

p-channel MOS cascode current-mirror load (M3, M4) is at the heart of the scheme.

This amplifier, together with the voltage buffer M9, can be thought of as the

basic amplifier involved in the feedback loop whose feedback network consists of the

resistor Rf and the capacitor Cf .

The cascode configuration is made up of a common-source amplifier stage fol-

lowed by a common-gate stage and is widely used because it increases the amplifier

output resistance and improves its frequency behavior with respect to a single-

transistor amplifier stage.

In our case the cascode connection allows us to achieve, from a small-signal

standpoint, a very high load resistance. This is represented by the output resistance

of the current mirror in parallel with the output resistance of the block consisting

of M1 and M2. Hence it is apparent that M2 performs the function of increasing
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the output resistance of this block with the only purpose of avoiding its becoming

significantly lower than that of the current mirror.

In fact the parallel combination of two resistors results in a resistor whose value

is always lower than the smaller value of the two resistors.

Futhermore, cascoding M1 provides only a small decrease in the transconduc-

tance of the basic amplifier, as we will show later.

Let us now note that an additive biasing current branch consisting of a p-channel

MOS cascode current-mirror (M6, M7, M8) causes an additional bias current IREF2

to flow in M1 only, to increase its small-signal transconductance (which is dirctly

proportional to its bias current since M1 operates in weak inversion) without de-

creasing the output resistances of M2, M3 and M4 (which are on the other hand

inversely proportional to the bias current). In fact such a decrease would occur if

we simply increased IREF1.

It should also be pointed out that M6, which acts as cascode for M7, has been

added in order to increase the output resistance of the simple current mirror (M7,

M8) in order that this resistance does not decrease the output resistance of M1 with

which it turns out to be in parallel.

Finally, the transistor M9 together with its active load M10 is used in the

common-drain configuration and acts as a voltage buffer whose function has alredy

been explained in subsection 3.1.2.

Let us now establish a connection between the small-signal parameters of the

circuit model shown in Fig. 3.10 and the small-signal parameters of the transistors

involved in the actual circuit diagram of Fig. 3.23.

First, let us consider the amplifier transconductance Gm. Let gmi, gmbi and roi

represent the small-signal parameters of the transistor Mi with i running from one

to eleven.

It can be shown that the cascode configuration (M1 and M2) gives

Gm = gm1






1 − 1

1 + (gm2 + gmb2) ro1 +
ro1

ro2






' gm1 (3.97)

by assuming (gm2 + gmb2) ro1 � 1, which is usually true.

Thus we set

Gm = gm1 (3.98)
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We now focus on the output resistance of a generic cascode amplifier (CS (Mi) –

CG (Mj)), namely

R(i,j)
cas = roi + roj + (gmj + gmbj) roi roj (3.99)

Thus, by assuming ro1 ‖ R
(7,6)
cas ' ro1, we set

RL = R(1,2)
cas ‖ R(4,3)

cas (3.100)

By continuing our analysis we find that CL is given by the sum of some parasitic

capacitance and thus we have

CL = (Cgd2 + Cdb2) + (Cgd3 + Cdb3) + (Cgs9 + Cgd9) (3.101)

Finally, we concentrate on the parameter B0 representig the small-signal voltage

gain of the buffer. In our circuit this buffer is achieved by means of the source

follower configuration made up of M9 and its n-channel MOS simple current-mirror

load (M10).

It can be shown that

B0 =
gm9 ro9

1 + (gm9 + gmb9) ro9 +
ro9

ro10

' gm9

gm9 + gmb9

(3.102)

in the limit as ro9 → ∞ and ro10 → ∞.

We observe that B0 is less than unity in the case under consideration because

the bulk of M9 is connected to ground causing vsb to be nonzero.

The parameter Ro of the buffer turns out to be the output resistance of the

source follower and is thus given by

Ro =
1

gm9 + gmb9 +
1

ro9

+
1

ro10

' 1

gm9 + gmb9

(3.103)

in the limit as ro9 → ∞ and ro10 → ∞.

Now, by setting Rf = 16.408 kΩ, Cf = 784.32 fF, Cd = 10 pF and the nominal

bias currents (IREF1, IREF2, IREF3) we are able to perform a computer simulation to

acquire the values of the small-signal parameters listed in Tab. 3.1. By substituting

in the preceding equations the values displayed in the table we are able to obtain

an adequate estimate of the parameters involved in our analytical model as well as

to produce the desired graphical outputs.
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gm gmb gds (r−1

o ) Cgd Cdb Cgs

M1 14.54 mS 4.298 mS 46.49 µS — — —

M2 5.164 mS 1.213 mS 20.69 µS 45.36 fF 159.9 aF —

M3 1.484 mS 378.1 µS 30.72 µS 8.844 fF 47.63 aF —

M4 3.87 mS 997.4 µS 48.72 µS — — —

M9 4.819 mS 1.137 mS 27.91 µS 24.59 fF — 302.7 fF

Table 3.1: List of small-signal parameters given by computer simulation.

3.2 Second Stage Analysis

In this section we will consider the second stage of our front end circuit. However

we will not perform a detailed analysis of the actual circuit which implements this

stage in practice.

In fact, our purpose is to obtain a fairly simple model of the whole circuit allowing

us to predict its behavior for varying some parameters as well as for introducing some

additional stages.

As shown in the schematic diagram of Fig. 3.24, the second stage can be thought

of as consisting of two main blocks, namely a basic amplifier (OTA) with its feedback

network (Rsh, Csh) and a gain stage assumed to have a high output resistance so

that it can be represented by a transconductor block.

This block feeds back a signal to the input and represents an active feedback

network having a frequency-dependent transfer function f (s). The purpose of this

active feedback is to keep the DC output voltage of the circuit VOUT (the baseline)

approximately equal to the DC reference value Vref .

3.2.1 Frequency Analysis of the Second Stage

Transfer Function

Let us now consider the small-signal equivalent circuit shown in Fig. 3.25 in order

to find the ratio Vout/Iin. In drawing this simplified equivalent circuit the input and

the output impedance of the OTA as well as the input and the output impedance

of the transconductor block have been neglected.
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Figure 3.24: Schematic diagram of the second stage.

Thus, by assuming Iout = 0, from KCL at the input node

Iin − Gm (s) Vout + (Vin − Vout)

(

1

Rsh

+ s Csh

)

= 0 (3.104)

Since

Vout = −Av (s) Vin ⇒ Vin = − Vout

Av (s)
(3.105)

substituting (3.105) into (3.104) and rearranging gives

Iin = Vout

[

Gm (s) +

(

1 +
1

Av (s)

) (

1

Rsh

+ s Csh

)]

(3.106)

and further rearranging yields

Vout

Iin

∣

∣

∣

∣

Iout=0

=
Av (s) Rsh

Gm (s) Av (s) Rsh + (1 + Av (s)) (1 + s Rsh Csh)
(3.107)
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+

Figure 3.25: Small-signal equivalent circuit of the second stage.

Then, assuming that both Av (s) and Gm (s) are one-pole transfer functions,

namely

Av (s) =
Av0

1 + s τOTA

(3.108)

and

Gm (s) =
Gm0

1 + s τHP

(3.109)

gives

T II (s) =
Vout

Iin

∣

∣

∣

∣

Iout=0

=
Av0 Rsh (1 + s τHP)

d̄0 + d̄1 s + d̄2 s2 + d̄3 s3
(3.110)

where


















d̄0 = 1 + Av0 (1 + Gm0 Rsh)

d̄1 = τOTA + (1 + Av0) (τHP + Rsh Csh)

d̄2 = τOTA (τHP + Rsh Csh) + (1 + Av0) Rsh Csh τHP

d̄3 = Rsh Csh τHP τOTA

(3.111)

It is apparent from (3.110) that the transfer function has three poles and one

zero. The magnitude of this negative real zero is given by

| z1 |=
1

τHP

' 145.52 s−1 ⇒ 23.16 Hz (3.112)
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The zero location has been numerically estimated by using the following parameter

list:

. Av0 = 570000 , τOTA = 660.94 µs

. Gm0 = 0.11 S , τHP = 6.872 ms

. Rsh = 19.592 kΩ , Csh = 732.376 fF

to which we will refer again whenever we estimate other small-signal quantities.

The parameter values listed above have been obtained by the analysis of the

actual circuit that realizes the second stage.

Let us now examine the poles. The transfer function denominator (3.110), can

be expressed as

DII (s) = d̄0 + d̄1 s + d̄2 s2 + d̄3 s3 = d̄0

(

1 +
d̄1

d̄0

s +
d̄2

d̄0

s2 +
d̄3

d̄0

s3

)

(3.113)

Thus the poles could be found by factoring the third-order polynomial in (3.113), a

calculation that can be performed using mathematical software. However, we can

obtain a fairly good estimate of these poles by assuming at first there is a dominant

pole p1, which allows us to consider

p1 ≈ − d̄0

d̄1

' − Gm0 Rsh

τHP + Rsh Csh

' −Gm0 Rsh

τHP

(3.114)

by assuming Gm0 Rsh � 1 as well as Av0 (τHP + Rsh Csh) � τOTA and τHP � Rsh Csh,

which is true in our case.

Thus

| p1 | ' 313.6 × 103 s−1 ⇒ 49.9 kHz (3.115)

As the frequency is increased well above | p1 |, where | s |�| p1 |, we have

|
(

d̄1/d̄0

)

s |� 1 so that (3.113) can be approximated by neglecting the constant 1

in parenthesis, to give

DII (s) ' d̄1 s

(

1 +
d̄2

d̄1

s +
d̄3

d̄1

s2

)

= d̄1 s

(

1 − s

p2

)(

1 − s

p3

)

(3.116)

Hence, the poles at high frequencies will be the roots of the quadratic term in

parenthesis in (3.116). Although they can be real or complex, assuming they are

real and widely separated (| p2 |�| p3 |) gives

p2 ≈ − d̄1

d̄2

' − Av0 τHP

τHP (τOTA + Av0 Rsh Csh)
' − 1

Rsh Csh

(3.117)
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and

p3 ≈
d̄1

d̄3

1

p2

= − d̄2

d̄3

' − Av0 Rsh Csh τHP

Rsh Csh τHP τOTA

= − Av0

τOTA

(3.118)

under the same assumptions as (3.114) and Av0 Rsh Csh � τOTA.

From (3.117) and (3.118) we have1

| p2 | ' 69.69 × 106 s−1 ⇒ 11.09 MHz (3.119)

and

| p3 | ' 862.41× 106 s−1 ⇒ 137.26 MHz (3.120)

Finally let us note that the values of the poles given by the preceding approx-

imated analysis agree exactly with those obtained by solving (3.113) for the poles

using a computer program, namely

| p1 |
2π

' 50.18 kHz ,
| p2 |
2π

' 11.04 MHz ,
| p3 |
2π

' 137.3 MHz (3.121)

The magnitude and phase of T II (s) |s=jω are shown in Fig. 3.26 that also allows

us to perform a graphical check of the preceding results.
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Figure 3.26: (a) Magnitude in dB-Ω and (b) phase in degrees of T II (jω) versus frequency

(Red and blue lines: analytical model).

1We recall that the pole and zero frequency values reported throughout the thesis have been

obtained by dividing the pole and zero magnitudes by 2π.
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Another interesting way of arriving at the same expression as in (3.110), (3.111)

for the transfer function is to apply the feedback theory to our circuit, which will

allow us to obtain a better understanding of the shape of the transfer function.

Figure 3.27 displays an ideal feedback configuration consisting of two main blocks

assumed to be unilateral, i. e. the block chacterized by a (s) (the basic amplifier) can

only tansmit the signal from the input to the output whereas the block chacterized

by f (s) (the feedback network) can only transmit the signal from the output to the

input and ideally does not load the basic amplifier.

+

_

Figure 3.27: Ideal feedback configuration.

It can be shown that under the above assumptions we obtain

Sout

Sin

=
a (s)

1 + a (s) f (s)
(3.122)

It should be pointed out that in practical feedback configurations the division

into basic amplifier and feedback network is not so easy to perform due to the

bilaterality of the actual amplifiers and the loading effect of the feedback network.

However, in the case under examination the simplified models of the amplifier

block and the feedback block allow us to apply the ideal feedback equation by simply

letting

a (s) = Tbck1 (s) =
Av0 Rsh

(1 + Av0) + [RshCsh (1 + Av0) + τOTA] s + τOTARshCsh s2
(3.123)

and

f (s) = Gm (s) =
Gm0

1 + s τHP

(3.124)

to give

T II (s) =
a (s)

1 + a (s) f (s)
(3.125)
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By considering the transfer function in the form given by (3.125) we can see that

at low frequencies, where |a (s) f (s) |� 1, we have

T II (s) ∼ 1

f (s)
(3.126)

whereas at high frequencies, where |a (s) f (s) |� 1, we have

T II (s) ∼ a (s) (3.127)

By examining equation (3.126) we can observe that the pole of the transcon-

ductor block has become a zero from the overall transfer function standpoint, in

agreement with what we have calculated in (3.112).

Furthermore, an analysis of equation (3.127) would give the same results as in

(3.117) and (3.118) for the high-frequency poles p2, p3 as well as a frequency behavior

in agreement with the high-frequency behavior shown in Fig. 3.26.

Input Impedance

By referring to the small-signal equivalent circuit of Fig. 3.25 we can find its input

impedance by considering the current source Iin as a test current source and the

voltage Vin as the voltage drop across it.

Thus, substituting Vout = −Av (s) Vin into (3.106), assuming It = −Iin as well

as Vt = Vin and Iout = 0 and rearranging gives

Z II
in (s) =

Vin

−Iin

∣

∣

∣

∣

Iout=0

=
Vt

It

=
Rsh (1 + s τHP) (1 + s τOTA)

d̄0 + d̄1 s + d̄2 s2 + d̄3 s3
(3.128)

where the coefficients of s, s2 and s3 in the denominator are still given by (3.111).

Since the denominator of (3.128) is the same as that of the transfer function,

even the poles of the input impedance are the same as those of the transfer function

and thus equations (3.114), (3.117), (3.118) still apply.

On the other hand, the numerator of equation (3.128) shows that the input

impedance also has two real negative zeros whose magnitude is given by

| z1 |=
1

τHP

' 145.52 s−1 ⇒ 23.16 Hz (3.129)

and

| z2 |=
1

τOTA

' 1.513× 103 s−1 ⇒ 240.8 Hz (3.130)
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The magnitude and phase of Z II
in (s) |s=jω are shown in Fig. 3.28. In particular,

the presence of the two low-frequency zeros can be checked by examining Fig. 3.28(b)

showing a phase value of about 180◦ at a frequency of about 5 kHz, which is in

agreement with the phase shift of 180◦ due to two low-frequency and fairly separated

zeros.
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Figure 3.28: (a) Magnitude in Ω and (b) phase in degrees of Z II
in (jω) versus frequency

(Red and blue lines: analytical model).

Output Impedance and Reverse Transmission

The output impedance and the reverse transmission of the second stage turns out

to be equal to zero due to the ideal models which we have chosen to represent the

two blocks making up the stage.

3.2.2 Pulse Response

In this section we will try to investigate the validity extent of our analytical model

in adequately representing the behavior of the second stage. We will also suggest

some changes suitable for improving the agreement between the predicted behavior

and the real one.

Thus, let us examine the pulse response of the circuit to the usual small input

current pulse iin (t) carrying a charge Q = 4 fC. By inspecting Fig. 3.29(b) we can

see that the shape of the output voltage is very different to that predicted by the
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Figure 3.29: Pulse response of the circuit shown in Fig. 3.24.

transistor-level model. The transfer function shown in Fig. 3.30, especially at high

frequencies, is also very different.
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Figure 3.30: (a) Magnitude in dB-Ω and (b) phase in degrees of T II (jω) versus frequency

(Red and blue lines: analytical model. Green and purple lines: transistor-level model).

Then, let us introduce some changes in our model to check their effects on the

transfer function and the resulting output voltage shape.

First, we can add to the output port of our OTA model an output resistance

ROTA

o so that now the following system is to be solved in order to find the new circuit
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response







1

Rsh

+ s Csh − 1

Rsh

− s Csh −
Gm0

1 + s τHP

− 1

Rsh

− s Csh +
Av0

ROTA

o (1 + s τOTA)

1

Rsh

+
1

ROTA

o

+ s Csh







[

Vin

Vout

]

=

[

−Iin

Iout

]

(3.131)

Thus, solving it for Vout by assuming Iout = 0 and following the usual steps

described in the previous sections give the new vout (t) whose shape is shown in

Fig. 3.31(b).
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(a) Input current pulse iin (t).
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(b) Circuit response vout (t) obtained by

setting ROTA

o = 200 Ω (Red line: analytical

model. Green line: transistor-level model).

Figure 3.31: Pulse response of the circuit shown in Fig. 3.24 after adding ROTA

o .

By examining the figure we can note that the addition of ROTA

o to the small-

signal equivalent circuit of Fig. 3.25 gives rise to the initial small spike in the pulse

response in accord with the real behavior.

Furthermore, an inspection of Fig. 3.32 also shows that the shape of the new

transfer function fits better the real one.

Let us now try to further improve the agreement between the results obtained

from the two models by adding a second pole to the function Av (s) representing

the voltage gain of the OTA.

Hence equation (3.108) becomes

Av (s) =
Av0

(1 + s τOTA) (1 + s τOTA2)
(3.132)
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Figure 3.32: (a) Magnitude in dB-Ω and (b) phase in degrees of T II (jω) versus frequency

in the case ROTA

o = 200Ω (Red and blue lines: analytical model. Green and purple lines:

transistor-level model).

and system (3.131) also changes, becoming







1

Rsh

+ s Csh − 1

Rsh

− s Csh −
Gm0

1 + s τHP

− 1

Rsh

− s Csh +
Av0

ROTA

o (1 + s τOTA) (1 + s τOTA2)

1

Rsh

+
1

ROTA

o

+ s Csh






·V = I

(3.133)

Then, solving (3.133) for Vout leads to the pulse response shown in Fig. 3.33(b)

which displays a good matching between the two models.

The same agreement can be appreciated by inspecting Fig. 3.34 which shows the

magnitude and phase of the small-signal transfer function.

In order to understand whether the changes so far introduced reflect the real

behavior of the component they model, let us concentrate on the output resistance

and the voltage gain of the OTA to check our assumptions.

A computer simulation of the actual circuit has shown that our estimate of ROTA

o

(about 200 Ω) is in fairly good agreement with the value of the output impedance of

the OTA over a wide range of frequencies whereas the model suggested by equation

(3.132) for the voltage gain gives good results at low frequencies but only fairly good

results at high frequencies, as shown in Fig. 3.35.
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(b) Circuit response vout (t) obtained by

setting ROTA

o = 200 Ω and τOTA2 = 1.85 ns

(Red line: analytical model. Green line:

transistor-level model).

Figure 3.33: Pulse response of the circuit shown in Fig. 3.24 after adding ROTA

o and a

second pole to Av (s).

However a finer matching at high frequency has been found by assuming

Av (s) =
Av0 Z

(2)
cc (s)

(1 + s τOTA) (1 + s τ̃OTA2) (1 + s τOTA3) P
(2)
cc (s)

(3.134)

where
{

Z
(2)
cc (s) = 1 + a1 s + a2 s2

P
(2)
cc (s) = 1 + b1 s + b2 s2

(3.135)

are two second order polynomials in s each of which has a pair of complex roots.

Thus by setting

. a1 = 1.309 ns , a2 = 0.579 (ns)2

. b1 = 0.238 ns , b2 = 0.105 (ns)2

. τ̃OTA2 = 1.74 ns ' τOTA2 , τOTA3 = 0.38 ns

we obtain the graphical result shown in Fig. 3.36 which allows us to see directly the

improved agreement of both the magnitude and the phase of Av (s).

The results so far obtained have shown that the two-poles model of Av (s) gives

good results when used for investigating the behavior of the whole second stage

although this model does not fit very well the real shape of the OTA voltage gain.
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Figure 3.34: (a) Magnitude in dB-Ω and (b) phase in degrees of T II (jω) versus frequency

in the case ROTA

o = 200Ω and τOTA2 = 1.85 ns (Red and blue lines: analytical model. Green

and purple lines: transistor-level model).

This cosideration leads us to think that in practice the transconductor block

performs a kind of compensation, which can be further highlighted by the compari-

son of Fig. 3.37 showing the magnitude only of the transfer function of the feedback

OTA with Fig. 3.34 which shows the magnitude of the transfer function of the whole

stage.

In fact, by examining Fig. 3.37 we can note a fairly important peak at high

frequency which tends to disappear when the transfer function of the whole stage is

considered.

However, although the previous analysis has pointed out some limitations of

our initial simplified model (i.e. the model without ROTA

o and with Av (s) given by

(3.108)) we will still use that simple model in our analysis.

The reason for such a choice is that the stage under consideration deals with

input current pulses much slower than incoming ones in the first stage. Thus we

will show that the response of the second stage to such pulses can be predicted with

adequate accuracy even by the simplest model.

Thus let us consider the pulse response shown in Fig. 3.39 which displays a small

input current pulse having a rise time tr = 3 ns and a fall time tf = 10 ns, unlike the

one used before to test the circuit response which showed a rise time t̄r = 1 ns and

a fall time t̄f = 1 ns.

By comparing Fig. 3.39(b) with Fig. 3.29(b) we can see directly that the same
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Figure 3.35: (a) Magnitude in dB and (b) phase in degrees of Av (jω) versus frequency

(Red and blue lines: two-poles model. Green and purple lines: transistor-level model).

model which shows an evident disagreement with the real circuit behavior in the

case of a fast pulse, on the contrary gives a fairly good result in the case of a slower

pulse.

One explanation of such different results can be found by comparing the Fourier

spectrum of the two pulses, as shown in Fig. 3.38. By inspecting the figure we can

observe that in the range where very high frequencies still play an important role

for the fast pulse, they are already much less significant for the slower pulse.

Thus it can be reasonable to expect that a fairly important disagreement at high

frequency between the models results only in a slightly different circuit response, in

the case of the slower pulse.
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Figure 3.36: (a) Magnitude in dB and (b) phase in degrees of Av (jω) versus frequency

(Red and blue lines: analytical model. Green and purple lines: transistor-level model).
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Figure 3.37: Magnitude in dB-Ω of the transfer function of the feedback OTA only.
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Figure 3.38: Fourier spectrum of the fast pulse and the slower pulse.
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(b) Circuit response vout (t) (Red line: analytical model. Green

line: transistor-level model).

Figure 3.39: Pulse response of the circuit shown in Fig. 3.24.
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3.3 Analysis of the Complete Amplifier

After the detailed analysis of the first and second stage of the front end circuit

performed in the preceding sections, the behavior of the full circuit will be dealt

with in this section from a small-signal standpoint.

This analysis could be performed by considering the complete small-signal equiv-

alent circuit, writing the corresponding circuit equations and solving them for the

total transfer function.

However this procedure would lead to a complex equation which would be fairly

difficult to interpret. Thus we will carry out the circuit small-signal analysis through

the use of two-port representations of the two stages involved.

This method also allows us to use small-signal functions such us transfer functions

as well as input and output impedances already calculated earlier for each stage.

3.3.1 Two-Port Representation of the First Stage

Figure 3.40 shows the block diagram of the first stage as well as the Z-parameter

two-port equivalent circuit representing it.

Focusing on the impedance-parameter equations, where the terminal currents

are assumed to be the independent variables, leads to the equations

V1 = Z11 I1 + Z12 I2 (3.136)

V2 = Z21 I1 + Z22 I2 (3.137)

where

Z11 =
V1

I1

∣

∣

∣

∣

I2=0

Z12 =
V1

I2

∣

∣

∣

∣

I1=0

(3.138)

Z21 =
V2

I1

∣

∣

∣

∣

I2=0

Z22 =
V2

I2

∣

∣

∣

∣

I1=0

(3.139)

Now, by referring to the small-signal equivalent circuit of the first stage shown

in Fig. 3.10 and to Fig. 3.40, letting V I
1 = Vin, V I

2 = Vout, I I
1 = −Iin and I I

2 = Iout

gives

Z I
11 =

V I
1

I I
1

∣

∣

∣

∣

II
2
=0

= Z I
in (s) (3.140)

75



3 – Modelling and Analysis of the CMAD Architecture

(a) Block diagram of the first stage.

+ +

(b) Z-parameter two-port equivalent

circuit for representing the first stage.

Figure 3.40: Block diagram and two-port representation of the first stage.

where Z I
in (s) is given by (3.49),

Z I
12 =

V I
1

I I
2

∣

∣

∣

∣

II
1
=0

= T I
rev (s) (3.141)

where T I
rev (s) is given by (3.94),

Z I
21 =

V I
2

I I
1

∣

∣

∣

∣

II
2
=0

= −T I (s) (3.142)

where T I (s) is given by (3.23) and finally

Z I
22 =

V I
2

I I
2

∣

∣

∣

∣

II
1
=0

= Z I
out (s) (3.143)

where Z I
out (s) is given by (3.84).

3.3.2 Two-Port Representation of the Second Stage

Figure 3.41 shows the block diagram of the second stage as well as the Z-parameter

two-port equivalent circuit representing it.

The impedance-parameter equations (3.136) and (3.137) as well as equations

(3.138) and (3.139) given in the previous subsection, still apply here.

Thus, by referring now to the small-signal equivalent circuit of the second stage

shown in Fig. 3.25 and to Fig. 3.41, letting V II
1 = Vin, V II

2 = Vout, I II
1 = −Iin and

I II
2 = Iout gives
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(a) Block diagram of the second stage.

+ +

(b) Z-parameter two-port equivalent

circuit for representing the second

stage.

Figure 3.41: Block diagram and two-port representation of the second stage.

Z II
11 =

V II
1

I II
1

∣

∣

∣

∣

III
2

=0

= Z II
in (s) (3.144)

where Z II
in (s) is given by (3.128),

Z II
12 =

V II
1

I II
2

∣

∣

∣

∣

III
1

=0

= T II
rev (s) = 0 (3.145)

Z II
21 =

V II
2

I II
1

∣

∣

∣

∣

III
2

=0

= −T II (s) (3.146)

where T II (s) is given by (3.110) and finally

Z II
22 =

V II
2

I II
2

∣

∣

∣

∣

III
1

=0

= Z II
out (s) = 0 (3.147)

3.3.3 Two-Port Representation of the Full Circuit

The results obtained in the preceding subsections can be used now to give a close-

form expression of the small-signal transfer function of the full circuit.

For this purpose let us consider Fig. 3.42 which also shows a resistor R required

to drive properly the second stage with a current signal.
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The value of this resistor can be externally set by choosing to connect one of the

two resistors shown in Fig. 3.43 which displays the schematic diagram of the total

circuit. The internal switch T allowing us to choose the desired resistance value is

achieved by means of a CMOS inverter.

The values of the resistors used in the actual circuit are

. R1 = 1224.49 Ω , R2 = 6367.36 Ω

+ + + +

Figure 3.42: The full circuit obtained by cascading the two main stages.

Thus, by letting V II
2 = Vout, I II

2 = Iout, I I
1 = −Iin and assuming I I

2, I II
1 have the

same direction as in Fig. 3.40(b) and Fig. 3.41(b), by direct inspection of Fig. 3.42

further assuming Iout = 0 we simply have

Vout = Z II
21 I II

1 (3.148)

Hence, since

I II
1 =

Z I
21 I I

1

R + Z I
22 + Z II

11

= −Iin
Z I

21

R + Z I
22 + Z II

11

(3.149)

substituting (3.149) into (3.148) and rearranging gives

Vout

Iin

∣

∣

∣

∣

Iout=0

= − Z II
21 Z I

21

R + Z I
22 + Z II

11

(3.150)

Finally, further substituting (3.146), (3.142), (3.143) and (3.144) into (3.150)

yields

T (s) =
Vout

Iin

∣

∣

∣

∣

Iout=0

= − T I (s) T II (s)

R + Z I
out (s) + Z II

in (s)
(3.151)

which is the small-signal transfer function of the whole circuit.
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Figure 3.43: Schematic diagram of the complete circuit.
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In addition it is interesting to calculate the transfer function of the first stage

allowing for the loading effect of the second stage. It can be shown that

V I
2

Iin

∣

∣

∣

∣

Iout=0

= T I (s)

(

R + Z II
in (s)

R + Z I
out (s) + Z II

in (s)

)

≈ T I (s) (3.152)

which shows that the second stage does not affect the behavior of the first stage

provided that |Z I
out |� R+ |Z II

in |.

3.3.4 Frequency Analysis of the Full Circuit

Transfer Function

The calculation of the transfer function of the full circuit has been already carried

out in the previous section and has led to equation (3.151).

The magnitude and phase of T (s) |s=jω are shown in Fig. 3.44. By inspecting

the figure we can observe the presence of a very low-frequency zero followed by a

low-frequency pole. They achieve an approximated high-pass filter stemming from

the low-pass transfer function of the active feedback network of the second stage, as

mentioned in section 3.2.1 (equation (3.126)).

This high-pass filter by providing a lower low-frequency gain, causes the output

baseline to be independent of the detector leakage current which shows very slow

changes. Thus the output baseline stabilization is guaranteed at low frequency.

However, when the rate of the unipolar incoming pulses becomes high or very

high, a drift of the output baseline is observed due to the presence of this high-pass

filter. This baseline shift mainly depending on the pulse rate and amplitude as well

as the low-frequency zero location will be taken into consideration in the following

subsection.

3.3.5 Pulse Response

First, let us consider the circuit response to the small single input pulse shown in

Fig. 3.45(a).

The responses displayed in Fig. 3.45(b) highlight once again the adequate accu-

racy of the results predicted by the analytical model.

Let us now focus on the response of the full circuit to a sequence of pulses

incoming at rate r = 5 MHz and carrying a charge Q = 4 fC.
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Figure 3.44: (a), (b) Magnitude in dB-Ω and (c), (d) phase in degrees of T (jω) versus

frequency (Red and blue lines: analytical model. Green and purple lines: transistor-level

model).

The output voltage is shown in Fig. 3.46 which also allows us to observe the

expected voltage drift mentioned in the previous subsection.

Moreover, Fig. 3.47 shows the graphical result of another analogous Mathematica

simulation carried out by applying to the input of the circuit a train of large current

pulses (incoming at r = 5 MHz) each of which produces a 3-V output signal.

This simulation has been performed to point out that the output voltage drift

is proportional to the area of the output signals so that it increases as these signals

are increased.

In fact by direct inspection of Fig. 3.46(b) and Fig. 3.47(b) we can estimate a
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(b) Circuit response vout (t) (Red line: an-

alytical model. Green line: transistor-level
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Figure 3.45: Pulse response of the circuit shown in Fig. 3.43.

baseline shift approximately equal to 1 mV and 0.7 V respectively, in agreement with

the preceding considerations.

It is also interesting to note that the baseline shift to peaking voltage ratio is

nearly the same in both cases and it is approximately equal to 22.5% for the given

rate r = 5 MHz.

In addition, we wish to point out that the circuit under consideration produces

output signals whose time length is nearly 160 ns, as shown in Fig. 3.45(b).

Thus the circuit so far described is unable to work properly as the pulse rate

exceeds the value r = 5 MHz (corresponding to a period T = 200 ns) due to the

pile-up effect2.

For this reason we will consider in the following chapters a circuit version able

to produce narrower output signals in order to provide a counting rate in the order

of 10 MHz.

This circuit will be referred to as the “fast” circuit, unlike the old circuit which

we will call the “slow” circuit.

Finally, we consider the simulation results shown in Fig. 3.48 to show the good

agreement between the slow-circuit response given by the SPICE simulation (founded

on a transistor-level model) and the one predicted by the Mathematica simula-

tion (founded on our analytical model) when a train of pulses incoming at rate

2pulse pile-up occurs when a second pulse rides on the tail of the first.
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(b) Circuit response vout (t) (analytical model).

Figure 3.46: Circuit response to a train of pulses (rate r = 5MHz).
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(b) Circuit response vout (t) (analytical model).

Figure 3.47: Circuit response to a train of large pulses (rate r = 5MHz).
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(b) Circuit response vout (t) (Red line: an-

alytical model. Green line: transistor-level

model).
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(d) The last five pulses.

Figure 3.48: Slow-circuit response to a train of pulses (rate r = 10MHz).

r = 10 MHz is applied to the circuit input and the pile-up phenomenon occurs.

Let us further note that all the simulations predicting the circuit response to a

pulse train have been performed by setting a constant pulse rate giving rise to an

asymptotic voltage drift.

However in practice baseline fluctuations occur due to the random arrival of the

pulses.

It is known that the number of events (pulse arrivals) occurring in a time interval

t follows the Poisson distribution so that the time elapsing between two consecutive

events follows an exponential distribution, as can be shown.

As far as the output voltage drift is concerned, a slew-rate limited non-linear
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buffer will be inserted before the transconductor block to form a new block which

is often referred to as BLH (baseline holder).

This buffer performs the function of dynamically clipping the pulses to be pro-

cessed by the transconductor block (the low-pass filter) in order to greatly reduce

their area.

However, this dynamic attenuation only occurs for fast and large signals, thus

allowing the feedback network of the second stage to perform its function properly

stabilising the low-frequency baseline fluctuations.

86



Chapter 4

Modelling the Non-Linear Buffer

The previous chapter has pointed out the need to accomplish a correct stabilisation

of the circuit output baseline especially for fast and large signals.

A slew-rate limited non-linear buffer dynamically clipping the pulses has been

presented as the best solution to our problem.

Thus, in this chapter this non-linear buffer will be taken into consideration and

a model allowing for its non-linearity will be presented and analysed.

This model will be used for performing some useful computer simulations which

will allow us to find the best values of the buffer slew-rate and bandwidth in order

to design the buffer correctly at transistor level.

4.1 Time Domain Analysis of the Full Circuit

In order to predict the circuit behavior after inserting the slew-rate limited non-

linear buffer, a circuit analysis in the time domain must be performed due to the

non-linearity of this new component.

However we will first describe the circuit behavior without the buffer to check

that our results are the same as those obtained in the previous chapter, where the

whole circuit analysis in the frequency domain has been performed.

4.1.1 Time Domain Analysis of the Circuit without the Buffer

By referring to Fig. 4.4 we are able to write the equations making up the linear

system describing the circuit behavior in the time domain.
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Thus from KCL at the input node,

vin − vI
out

Rf

+ Cf
d

dt
(vin − v0) + Cd

dvin

dt
= −iin (4.1)

From KCL at node (1),

Cf
d

dt
(v0 − vin) +

v0

RL

+ CL
dv0

dt
+ Gm vin = 0 (4.2)

From KCL at node (2),

vI
out − vin

Rf

+
vI

out − vII
in

R
+

vI
out − B0 v0

Ro

= 0 (4.3)

From KCL at node (3) by letting Av0 v̄c = vout,

vII
in − vI

out

R
− Gm0 vc +

vII
in − vout

Rsh

+ Csh
d

dt

(

vII
in − vout

)

= 0 (4.4)

From KCL at node (4) by setting R̄ C̄ = τOTA, ḡm R̄ = 1 and v̄c = vout/Av0,

vout

τOTA

+
dvout

dt
+

Av0 vII
in

τOTA

= 0 (4.5)

From KCL at node (5) by setting R C = τHP and gm R = 1,

vc

τHP

+
dvc

dt
− vout

τHP

= 0 (4.6)

Numerically solving for vout (t) the system consisting of the preceding equations

gives the graphical result shown in Fig. 4.1 in the case when iin (t) represents a pulse

train whose rate is r = 10 MHz, as shown in Fig. 4.1(a).

Then, by comparing Fig. 4.1(b) to Fig. 3.48(b) we can check graphically that

the two different approaches to calculate the pulse train response of the circuit have

led to the same results.

4.1.2 Modelling the Non-Linear Buffer

In order to find a model suitable for representing the non linear behavior of our

buffer for large input signals, let us consider the large-signal performance of an op

amp in a unity-gain feedback configuration.
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(b) Circuit response vout (t) (analytical

model).

Figure 4.1: Slow-Circuit response to a train of pulses (rate r = 10MHz).

If we really tested the performance of an op amp in such a configuration by

applying a large step input voltage, we would find that the output voltage exhibits

a response completely different to the one that a small-signal analysis would predict.

In fact we would see that the output voltage is a fairly slow ramp of almost

constant slope instead of being an exponential curve approaching the step input

voltage.

The maximum rate of change of the output voltage in the region of constant

slope is called the slew rate (SR).

The difference between the predicted and the observed behavior is due to the

fact that in our test the op amp operates completely out of its linear range, because

of the large input step voltage applied at its input terminal.

+

_

Figure 4.2: A block diagram of a two-stage op amp with Miller compensation capacitor.

To realise the origin of the slew-rate limitations characterising the op amp we can

refer to the simplified block diagram shown in Fig. 4.2 representing a two-stage op
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4 – Modelling the Non-Linear Buffer

amp. The first block represents the op-amp input differential pair whereas the second

block represents a high-gain output stage together with the Miller compensation

capacitor C.

Since the high-gain output stage acts as an integrator, the output voltage can

be expressed as

Vo =
1

C

∫

IoutI dt (4.7)

When the op amp is forced to operate nonlinearly, it responds by charging the

compensation capacitor with the maximum current available, namely the tail current

of the differential input stage.

Thus, by assuming that 2 I1 represents this constant current, we have

SR =
2 I1

C
(4.8)

and this equation results in the observed constant rate of change of Vo mentioned

earlier.

2 I
1

-2 I
1

Figure 4.3: Very approximate large-

signal transfer characteristic of the in-

put stage.

A very approximate large-signal transfer

characteristic which takes into account the pre-

ceding considerations is shown in Fig. 4.3.

The slope of this curve in the linear region

corresponds to the small-signal transconduc-

tance of the input stage (gmI).

Let us observe that the op-amp simplified

representation of Fig. 4.2 contains all the main

parameters concerned with the calculation of

the SR and the amplifier bandwidth.

Moreover, although this model has been

conceived by referring to a particular case, it is

suitable for representing the behavior of most

circuits operating in a similar way.

Let us now calculate an approximate expression for the small-signal transfer

function of our op amp when it is used in a unity-gain feedback configuration.

Referring to the model shown in Fig. 4.2 and assuming that the input stage has

an infinite output resistance as well as the high-gain output stage an infinite input
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Figure 4.4: The full equivalent circuit for the time domain analysis.
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resistance and a zero output resistance, gives

Vo

Vd

=
Vo

IoutI

IoutI

Vd

=

(

Av

1 + Av

)

gmI

s C
' gmI

s C
(4.9)

due to the high gain Av.

Thus, if our op amp is used in a unity-gain feedback configuration we have

V+ = Vin, V− = Vo and hence Vd = Vin − Vo, so that

Vo

Vin

' 1

1 + s (C/gmI)
(4.10)

Hence the –3-dB frequency of our buffer is connected to the model parameters

through the approximate relationship

fbuf
−3 dB ' gmI

2π C
(4.11)

4.1.3 Time Domain Analysis of the Circuit with the Buffer

The analysis performed in the previous section allows us now to write the time-

domain equations describing the circuit behavior after inserting the non-linear buffer.

Thus by referring to Fig. 4.5 which shows the whole equivalent circuit including

the non-linear buffer, we are able to write the new non-linear system governing the

circuit.

Equations (4.1), (4.2), (4.3), (4.4), (4.5) still apply here. On the other hand

equation (4.6) must be written now as

vc

τHP

+
dvc

dt
− vbuf

out

τHP

= 0 (4.12)

and a supplementary non-linear differential equation representing the buffer behavior

must be added.

This equation can be written as

C
dvbuf

out

dt
= IoutI (Vd (t)) (4.13)

where

Vd (t) = vout − vbuf
out (4.14)

due to the unity-gain feedback configuration of our op-amp model, and IoutI (Vd)

represents the shape of the large-signal transfer characteristic of the input stage of

the model.
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Figure 4.5: The full equivalent circuit for the time domain analysis including the non-linear buffer.
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4 – Modelling the Non-Linear Buffer

4.2 Computer Simulations of the Full Circuit

In this section we will present the graphical results obtained by numerically solving

the non-linear system governing the circuit and given in the preceding section.

The purpose of these simulations is to find the best slew-rate values satisfying

the strict design specifications such as the maximum tolerable fluctuation of the

circuit output baseline, namely from 1 mV to 3 mV for 3 -V output signals.

Moreover, in agreement with the considerations stated at the end of the previ-

ous chapter, the simulations have been performed even in the case of a narrower

output signal (fast option) in order to take into account further circuit performance

improvements.
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(a) Single input current pulse.
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(b) Corresponding output voltage signal.
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(c) Pulse train iin (t).
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(d) Circuit response vout (t).

Figure 4.6: Slow-circuit response (no buffer) to a single large pulse and a train of large

pulses (rate r = 5MHz).
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Figure 4.6(a) shows the shape of the input current pulse (giving a 3 -V output

signal) which has been used for our computer simulations. From an analytical point

of view this signal is given by

iin (t) = hmax e−k (t−tmax)2 (4.15)

where hmax and tmax represent the coordinates of the pulse peak.

The charge carried by this pulse is approximately equal to 2.7 pC.

The response of the slow circuit without the buffer to a sequence of such pulses

is shown in Fig. 4.6(d). By inspecting the figure we can observe a baseline shift of

about 0.7 V.

4.2.1 Slew-Rate Symmetrically Limited Buffer

2 I
1

-2 I
1

Figure 4.7: Large-signal transfer

characteristic of the input stage.

In this subsection we consider the simu-

lations performed by assuming that the large-

signal transfer characteristic of the input stage

of our op-amp model had the shape shown in

Fig. 4.7.

By direct inspection of the figure we can

predict that the constant rate of change of the

buffer output voltage will be

SR1 =
2 I1

C
(4.16)

when the buffer operates nonlinearly and Vd > 0, and

|SR2 | =
2 I1

C
(4.17)

when the buffer operates nonlinearly and Vd < 0.

Thus, due to the symmetry of the large-signal transfer characteristic, we have

SR1 = |SR2 |. This is what we mean with the expression slew-rate symmetrically

limited buffer.

Moreover, by opportunely setting the values of I1 and C, in theory we are able

to set the slope of the output ramp. However in practice several design constraints

mean that the desired SR value is not always so easy to obtain.
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Let us now give the analytical form of the function IoutI (Vd) shown in Fig. 4.7.

This function is to be substituted into (4.13) to solve the system in the case under

examination.

We have

IoutI (Vd) =



























−2 I1 Vd < −2 I1

gmI

gmI Vd −2 I1

gmI

≤ Vd <
2 I1

gmI

2 I1 Vd ≥ 2 I1

gmI

(4.18)

However after several simulations performed by varying SR, we realised that the

resulting symmetrical shape of the buffer output voltage (a signal in the shape of

a isosceles triangle) is not able to provide a baseline stabilisation which meets the

given specifications.

We also realised that the efficiency of this baseline stabilisation method is too

dependent on the pulse shape and width. Thus we decided not to continue such

simulations.

4.2.2 Slew-Rate Asymmetrically Limited Buffer

2 I
1
+I

2

-2 I
1
+I

2

Figure 4.8: Large-signal transfer

characteristic of the input stage.

Let us now consider the simulations per-

formed by assuming that the large-signal trans-

fer characteristic of the input stage of our op-

amp model had the shape shown in Fig. 4.8.

By letting

IMAX1 = 2 I1 + I2

and

IMAX2 = 2 I1 − I2

and further assuming I2 < 2 I1, we can predict that the constant rate of change of

the buffer output voltage will now be

SR1 =
IMAX1

C
(4.19)
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when the buffer operates nonlinearly and Vd > 0, and

|SR2 | =
IMAX2

C
(4.20)

when the buffer operates nonlinearly and Vd < 0.

The analytical form of the function ĪoutI (Vd) shown in Fig. 4.8 can be found by

simply adding a constant term I2 to IoutI (Vd) given in (4.18). This function is to be

substituted into (4.13) to solve the system in the case under examination.

Unlike the symmetrical case the simulations performed in the asymmetrical case

by varying SR have given interesting results and have allowed us to obtain two

slew-rate values providing a baseline fluctuation which meets the specifications.

These values are I1 = 107.5 nA, I2 = 185 nA (from which IMAX1 = 400 nA,

IMAX2 = 30 nA) and C = 1 pF, from which

SR1 =
IMAX1

C
= 0.4

V

µs
(4.21)

and

|SR2 | =
IMAX2

C
= 0.03

V

µs
(4.22)

The graphical outputs obtained by using the above values and setting gmI = 1 mS

(it will be shown later that this value plays an important role only in determining

the proper buffer bandwidth) are shown in Fig. 4.9 in the case of the slow circuit

and in Fig. 4.10 in the case of the fast circuit (in this case narrower output signals

have been obtained by setting Rf = 4.408 kΩ and Csh = 186.964 fF).

By examining Fig. 4.9(d) we can appreciate a maximum baseline shift approxi-

mately equal to 2.2 mV with the buffer to be compared to the approximate value of

0.7 V without the buffer, shown in Fig. 4.6(d).

The above value of maximum baseline shift has been obtained in the case of the

slow circuit at a pulse rate r = 5 MHz to avoid the pile-up effect.

However further simulations have shown that baseline-shift values satisfying the

given design specifications can be still found up to a rate r = 6.2 MHz (shift pre-

dicted: 2.75 mV).

On the other hand, by examining Fig. 4.10(d) we can appreciate a maximum

baseline shift approximately equal to 0.7 mV with the buffer to be compared to the

approximate value of 0.4 V obtained without the buffer (not shown).
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Moreover, unlike the preceding case, this maximum value of baseline shift has

been obtained in the case of the fast circuit at a pulse rate r = 10 MHz without the

pile-up effect occurring.

In fact, reducing the time length of the output pulses gives very good results

even at a high counting rate and results in an important improvement of the circuit

performance.

In particular the fast circuit is able to work properly up to a rate r = 10 MHz

because the time length of its output pulses is nearly the half of the one of the

slow-circuit output pulses.
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(d) The last three pulses (Red line: circuit

output voltage. Green line: buffer output

voltage).

Figure 4.9: Slow-circuit response to a train of pulses (rate r = 5MHz).
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(b) Circuit response (with buffer) vout (t).
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(d) The last three pulses (Red line: circuit

output voltage. Green line: buffer output

voltage).

Figure 4.10: Fast-circuit response to a train of pulses (rate r = 10MHz).

4.2.3 Circuit Response to Bipolar Incoming Pulses

So far we have considered the circuit response to a sequence of unipolar incoming

pulses. In fact this is in exact agreement with the detector features.

However, even the circuit response to pulses of opposite sign to that of the main

pulses must be taken into consideration, due to the fact that a sporadical presence

of such pulses is likely to exist (due to noise, for example).

Obviously, because of the non-symmetrical behavior of the buffer we can imagine

that the circuit response to pulses of opposite sign to that of the main pulses will

not give the same good results shown in the previous section, due to the strong

one-directional slew-rate limitation.
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Thus, our aim is to check whether the slew-rate values optimised for the main

pulses are able to provide at least a fairly fast restoration of the circuit’s normal

working conditions.

Figure 4.11(b) shows the slow-circuit response predicted by our analytical model

by assuming that every fifty main pulses a pulse of opposite sign occurs.

On the other hand, Fig. 4.12(b) shows the fast-circuit response under the same

above assumption.

By examining the graphical results we can observe that the slew-rate values we

have chosen allow the circuit to manage fairly well even incoming pulses of opposite

sign to that of the main pulses.

Finally we point out that the circuit response to higher noise pulse rates has not

been taken into consideration because it does not seem realistic that the detector

performance is worse than that we have previously supposed and analysed.
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(a) Pulse train iin (t) with noise spikes

(1 every 50).
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(b) Magnification of the circuit output volt-

age region near the t axis.

Figure 4.11: Slow-circuit response (with buffer) to a train of pulses with noise spikes

(rate r = 5MHz).

4.2.4 The Buffer Bandwidth

The simulation results so far examined have concerned only the buffer slew-rate best

values. Moreover, as mentioned earlier, all these simulations have been performed

by setting gmI = 1 mS.

This is correct since in practice and also in our model the buffer slew rate and
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(a) Pulse train iin (t) with noise spikes

(1 every 50).
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(b) Magnification of the circuit output volt-

age region near the t axis.

Figure 4.12: Fast-circuit response (with buffer) to a train of pulses with noise spikes

(rate r = 10MHz).

the buffer bandwidth can be considered independent of each other and thus taken

into consideration separately.

However, in order to check the preceding assumption we have performed a test

whose graphical result is shown in Fig. 4.13.
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Figure 4.13: Buffer response to two consecu-

tive large voltage steps (descending and ascend-

ing step).

We have applied to the buffer an

input signal consisting of a voltage

step from 0 to -1 V followed by a sec-

ond step from -1 V to 0 in order to test

whether both the slew-rate values are

really independent of the buffer band-

width.

Then we performed several sim-

ulations by varying the –3-dB frequency

of the buffer from a value of 1 MHz to

a value of 10 MHz in steps of 1 MHz.

Even a –3-dB frequency value of 500 kHz has been tested (the first red line on high

shown in Fig. 4.13).

By inspecting the figure we can note that the slope of both of the expected

ramps (the descending ramp and the ascending ramp) turn out to be unaffected by

the bandwidth changes.

101



4 – Modelling the Non-Linear Buffer

(a) (b)

Figure 4.14: (a) Magnitude in Ω of the full-circuit small-signal transfer function (with

buffer) and (b) slow-circuit single-pulse response (with buffer): magnification of the region

(of a 3-V output signal) showing the baseline fluctuations occurring by varying the buffer

pole position.

Let us now investigate the effect of the buffer bandwidth on the small-signal

transfer function of the whole circuit, to find the bandwidth values which could

involve the circuit instability.

The performed simulations have given the results shown in Fig. 4.14.

Figure 4.14(a) shows the magnitude of the small-signal transfer function of the

full circuit including the buffer, by varying the position of the dominant pole char-

acterising the unity-gain small-signal transfer function of the buffer.

By inspecting the figure we can see that a buffer bandwidth greater than 1 MHz is

required in order to avoid the slow oscillations of the baseline shown in Fig. 4.14(b).

In fact, Fig. 4.14(b) allows us to appreciate the shape of such oscillations, in the

case of the slow circuit, for a 3 -V output signal as the buffer bandwidth changes.
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Chapter 5

The Non-Linear Buffer:

Transistor-Level Design and

SPICE Simulations

In the previous chapter an analytical model suitable for representing the buffer

large-signal behavior was presented.

The shape of the large-signal transfer characteristic giving the best results from

a specification matching point of view has been investigated.

The best slew-rate values for the slew-rate asymmetrically limited buffer have

been found and tested by means of Mathematica simulations.

Now, in this chapter the circuit designed to obtain the results predicted by the

performed computer simulations will be presented and analysed.

We will also point out some circuit drawbacks arising especially when large and

fast signals are processed.

Thus, we will show two alternative circuits able to improve circuit performance

in order to overcome the encountered problems.

5.1 The Non-Linear Buffer Basic Circuit

In this section we will analyse the behavior of the circuit achieving the slew-rate

limited non-linear buffer.

Figure 5.1 shows the schematic diagram of the circuit. By inspecting the figure we

can note that a n-channel MOS source-coupled pair with a p-channel current-mirror
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load implements the differential input stage of the buffer whereas a common-drain

configuration (source follower) consisting of an n-channel MOS with an n-channel

MOS current-mirror load realises the single-ended output stage.

Furthermore a capacitive load CL is connected between the source of M7 (the

circuit output) and ground.

We can add that a source follower has been used to drive this capacitive load

due to its intrinsic feature of providing the asymmetrical slew-rate limitation whose

advantages have been pointed out in the previous chapter.

On the other hand the p-channel MOS current mirror consisting of transistors

M8, M9 only performs the function of limiting the current that M7 would be able

to pull down for charging the output capacitor.

However this topic will be discussed later when a detailed analysis of the large-

signal circuit behavior will be carried out.

We only note here that the maximum value of this current can be set by choosing

a proper value of the input current source of the mirror under consideration, namely

the constant current pulled down by M11.

Finally we can observe that a unity-gain negative feedback is provided by con-

necting the inverting terminal of the input differential pair to the output of the

circuit.

5.2 Large-Signal Behavior of the Buffer Circuit

In this section we will analyse the behavior of the actual circuit implementing the

slew-rate limited buffer stage, from a large-signal standpoint.

The graphic results of several transistor-level SPICE simulations will be shown

and discussed in order to check whether the limiting function performed by the cir-

cuit corresponds to that required to satisfy the strict requirements on the maximum

baseline shift.

SPICE simulations have been performed by applying to the circuit three different

input voltage signals whose shape is shown in Fig. 5.2 together with the respective

signals of opposite sign.

From the figure we can see that the applied input signals start from a dc voltage

level of 2 V and reach a maximum voltage value of 3 V or a minimum voltage value

of 1 V.
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Figure 5.2: Input signals used to test the circuit large-signal performance.
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The above value of 2 V has been set by taking into account that the circuit is

used in a unity-gain feedback configuration causing the circuit dc output voltage to

be very near to the input dc voltage level, namely 2 V in our case.

In fact, since the circuit output voltage also represents the source voltage of M7

in our case and since the gate-source voltage of M7 is approximately equal to 1 V,

when the output voltage is set to 2 V the source-drain voltage of M4 assumes a value

of about 0.3 V which is almost the minimum value required to bias M4 at the edge

of the active region.

The preceding considerations highlight an important drawback of this circuit.

In fact it reduces to 2 V only the maximum output swing of the whole front-end

circuit since we should recall that the dc output voltage of the whole circuit is really

the dc input voltage of our buffer.

On the other hand a maximum output swing approximately equal to 3 V would

be strongly recommendable to fully exploit the output dynamic range of the shaper.

To overcome this problem a change in the circuit schematic will be performed

and shown in a following section.

5.2.1 Circuit Response to a Wide Test Signal

In this section we will analyse the circuit response to the first pair of test input signals

shown in Fig. 5.2, namely the signals displayed in Fig. 5.2(a) and Fig. 5.2(b).

We will refer to these signals as wide test input signals, meaning that their time

length (nearly 2.5 µs) is much greater than the one that the output signals of the

whole front-end circuit (which will be the buffer input signals when it is inserted in

the whole circuit) are assumed to have.

Moreover we will call the signal shown in Fig. 5.2(a) the negative test signal

whereas the signal shown in Fig. 5.2(b) the positive test signal, where here the

signals are considered to be negative and positive with respect to the dc value of

2 V.

Finally we will discuss in detail the buffer response to the wide test signals

in order to obtain an insight into the large-signal behavior of the circuit under

examination.
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Negative Test Signal

Figure 5.3 and Fig. 5.4 show the time evolution of some significant circuit node

voltages such as the input node, the output node and other interesting internal

nodes, namely the nodes we labeled 1, 2 and 3 in the circuit diagram of Fig. 5.1.

On the other hand Fig. 5.5 shows the graphical superimposition of the above

node voltages as well as the current flowing into the capacitor CL in order to realise

whether the two different slew-rate limitations occur (as far as the current flowing

into the capacitor is concerned, let us recall that during the slewing period the

capacitor is charged by a constant current whose value should be in agreement with

the design value).
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(a) Input voltage
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(b) Output voltage

Figure 5.3: Time evolution of some significant circuit node voltages.
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(c) Voltage at node 3

Figure 5.4: Time evolution of some significant circuit node voltages.
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Figure 5.5: (a) Superimposition of some significant node voltages, (b) current flowing

into the capacitor CL and (c) magnification of the region near the t axis.

110



5 – The Non-Linear Buffer: Transistor-Level Design and SPICE Simulations

Thus, by interpreting the graphical results shown in Fig. 5.5(a) we are able to

discuss the circuit behavior.

At the beginning the node voltages we are interested in have the quiescent values

listed below

. vIN = 2 V , vOUT = 1.997 V

. v1 = 1.137 V , v2 = 2.851 V , v3 = 3.297 V

The input signal vIN is applied to the gate of M1 and thus its gate voltage,

following the signal, reaches the value of 1 V in only 20 ns (the signal fall time).

Since v1 also represents the source voltage of M1 and this transistor can be

thought of as operating in a common-drain configuration (source follower), we can

imagine that v1 follows the gate voltage of M1.

In fact, from a large-signal standpoint, v1 is equal to the input voltage minus the

gate-source voltage of M1. As a result, if we assume that the gate-source voltage

is approximately constant, v1 will be simply offset from the input, as shown in

Fig. 5.5(a).

On the other hand vOUT, which is also the gate voltage of M2, cannot respond

instantaneously and is initially near to its quiescent value of about 2 V. In fact some

charge must be removed from the capacitor CL connected to the output node, in

order to lower the output node voltage.

As a consequence the gate-source voltage of M2 becomes much larger than the

gate-source voltage of M1 which is still approximately equal to its initial value, in

agreement with the preceding considerations.

Thus the current pulled down by M1 which is nearly the same current as the

transistor M4 pushes down due to the current mirror, is less than the current pulled

down by M2.

Then the voltage v2 must diminish to reduce the current in M2, forcing M2 to

operate in the triode region in order to satisfy KCL at node 2.

As a result the drain voltage of M2 approaches the voltage v1, as shown in

Fig. 5.5(a), causing the gate-source voltage of M7 to become largely negative so

that M7 is now forced to operate in the cutoff region.

Let us recall that at the beginning, before the signal arrived, M7 operated in the

active region whereas M8 was forced to operate in the triode region.
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In fact the value of the bias current of M7 (50 nA) dictated by the current mirror

M12, M10 is less than the current value dictated by the current mirror M12, M11

(500 nA) and pushed down by M8 (due to the current mirror M9, M8) so that v3

must rise to reduce the current in M8 and satisfy KCL at node 3.

On the other hand, now, as mentioned before, M7 operates in the cutoff region

so that it pulls down zero current, causing v3 to further rise to reach the maximum

voltage value of 3.3 V (power supply), as shown in Fig. 5.5(a) or in Fig. 5.4(c).

Thus the output capacitor CL is discharged at the expected constant rate SR1 =

I/CL, where I is the constant bias current of M7 (50 nA), as shown in Fig. 5.5(c).

The capacitor discharge continues till the output voltage becomes equal to the

input voltage.

In fact, starting from this point the circuit behavior is reversed with respect to

the one that we have so far described.

The input voltage is rising and its value becomes greater than the output voltage

value so that now M1 (and hence M4) pulls down a current which is more than the

current pulled down by M2, causing v2 to increase to reduce the current in M4.

As v2 increases also the gate-source voltage of M7 increases, so that the current

pulled down by M7 causes the source-drain voltage of M8 to rise until it enters the

active region. Since the current pulled down by M7 is more than the current pushed

down by M8 (500 nA), v3 must diminish to reduce the current in M7, forcing M7 to

operate in the triode region, as shown in Fig. 5.5(a).

During this period the output capacitor is charged for the output voltage to

reach the value of 2 V.

However in this case it is quite difficult to appreciate the constant current of

about 500 nA charging the capacitor since the voltage gap to be filled is so small

(only a few tens of millivolts) that the above limitation of 500 nA only occurs for a

very short time, as shown in Fig. 5.5(c).

It should also be pointed out that the shape of the output voltage shown in

Fig. 5.3(b) has some drops (not predicted by the ideal model) at the points where

the signal changes rapidly, due to the parasitic feedthrough of the input signal.

Because of this phenomenon some extra current (the peaks shown in Fig. 5.5(b)

at the points where the signal changes rapidly) can charge or discharge the capacitor

through alternative capacitive paths involving some circuit parasitic capacitances.

The capacitive feedthrough plays a crucial role in our case since it causes the
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strong slew-rate limitation to occur only after the output voltage dropped a few tens

of millivolts, as we can appreciate by inspecting Fig. 5.3(b).

This drop increases the total area of the output signal significantly so that we

can imagine that this area will be too large to guarantee a baseline stabilisation in

the order given by our design specifications.

One possible solution to this problem will be taken into consideration later.

Positive Test Signal

Let us consider the circuit response to the wide positive test signal shown in Fig. 5.2(b).

The circuit large-signal behavior is reversed now with respect to the one that

we described in the preceding subsection so that a detailed analysis of the behavior

in the case under consideration can be performed by following steps analogous to

those previously discussed in detail for the opposite case (first of all we should take

into consideration the situation that occurred at the end of the preceding analysis

and vice versa).

The time evolution of the same node voltages as in the preceding case are shown

separately in Fig. 5.6 and Fig. 5.7 as well as simultaneously in Fig. 5.8 to allow an

immediate graphical check of the circuit behavior in this case.

By examining Fig. 5.8(a) we can see that unlike in the preceding case, the ca-

pacitor current limitation to the value of about 500 nA is very evident now, due to

the large voltage gap to be filled in this case for the output voltage to reach the

input voltage.

Figure 5.8(c) shows very clearly what we stated above, even allowing us to ap-

preciate the current limitation of about 50 nA occurring after the output voltage

has crossed the descending input voltage ramp.

However, by further inspecting Fig. 5.8(a) we can note that the current limitation

dictated by M8 forcing M7 to operate in the triode region halts when the output

voltage reaches a value approximately equal to 2.35 V which is evidently sufficient

to cause the gate-source voltage of M7 to assume a value such that the current it

pulls down is less than the current of 500 nA pushed down by M8.

5.2.2 Circuit Response to a Narrow Test Signal

After investigating the circuit behavior by using a wide test input signal, in this

section we are interested in testing the large-signal circuit response in the case when
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Figure 5.6: Time evolution of some significant circuit node voltages.

a narrow input signal is applied.

In fact the shape and time length of such a signal are fairly similar to the output

signals that our actual circuit will present to the buffer input when the buffer is

inserted in the whole circuit.

Negative Test Signal

The circuit response to the test signal shown in Fig. 5.2(c) is illustrated in Fig. 5.9

together with the current flowing into the capacitor CL.

Let us note that the signal shows a fall time tf = 20 ns, a rise time tr = 126 ns

and a duration td = 4 ns.
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Figure 5.7: Time evolution of some significant circuit node voltages.
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Figure 5.8: (a) Superimposition of some significant node voltages, (b) current flowing

into the capacitor CL and (c) magnification of the region near the t axis.

116



5 – The Non-Linear Buffer: Transistor-Level Design and SPICE Simulations

100 200 300 400 500
t HnsL

1.2

1.4

1.6

1.8

2

vIN HVL

(a)

100 200 300 400 500
t HnsL

1.94

1.95

1.96

1.97

1.98

1.99

vOUT HVL

(b)

100 200 300 400 500
t HnsL

-6

-4

-2

iC HΜAL

(c)

Figure 5.9: (a) Input (and output) voltage, (b) output voltage and (c) current flowing

into the capacitor CL.
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By inspecting Fig. 5.9(b) as well as Fig. 5.9(c), we can observe that in this case

the circuit response is completely dominated by the parasitic feedthrough so that

we cannot recognise any kind of current limitation, even by examining the capacitor

current graph.

Positive Test Signal

The circuit response to the test signal shown in Fig. 5.2(d) is illustrated in Fig. 5.10

whereas Fig. 5.11 shows the current flowing into the capacitor CL.
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(b)

Figure 5.10: (a) Input (and output) voltage, (b) output voltage.

Unlike the preceding case, by direct inspection of Fig. 5.11(b) we are able to

recognise the two constant currents (500 nA and 50 nA) charging and discharging

the output capacitor.
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Figure 5.11: (a) Current flowing into the capacitor CL and (b) magnification of the

region near the t axis (Positive narrow test signal).

5.2.3 Circuit Response to a Very Narrow Test Signal

After investigating the circuit response to a narrow test input signal, we will now

test the large-signal circuit response in the case when a very narrow input signal is

applied.

In fact we wish to know the circuit response to such signals since they are the

signals we should obtain at the output of our whole circuit in order to improve its

counting rate up to a rate in the order of 10 MHz still satisfying the specifications

on the maximum baseline shift.
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Negative Test Signal

The circuit response to the test signal shown in Fig. 5.2(e) is illustrated in Fig. 5.12

together with the current flowing into the capacitor CL.

We note that the signal shows a fall time tf = 20 ns, a rise time tr = 63 ns and a

duration tw = 4 ns.

By inspecting Fig. 5.12(b) as well as Fig. 5.12(c), we can observe that also in this

case the circuit response is completely dominated by the capacitive feedthrough.

Thus we cannot recognise any kind of current limitation even by examining the

capacitor current graph, which was predictable given that the time length of the

input signal has been further reduced.

Positive Test Signal

The circuit response to the test signal shown in Fig. 5.2(f) is illustrated in Fig. 5.13

whereas Fig. 5.14 shows the current flowing into the capacitor CL.

By direct inspection of Fig. 5.14(b) we can note that we are still able to recognise

the two constant currents (500 nA and 50 nA) limiting the current flowing into the

capacitor.

5.2.4 Reducing the Capacitive Feedthrough

The detailed analysis performed in the previous section has pointed out that the

main factor increasing the total area of the buffer output signal is the initial output-

voltage drop due to the capacitive feedthrough phenomenon.

As a result, our principal goal becomes the capacitive-feedthrough reduction.

First, we should verify whether the voltage drop depends on the very angular

shape of our test signals.

For this purpose we have decided to insert a low-pass filter (an R C-filter with

R = 5 kΩ and C = 1 pF) downstream to the signal generator in order to give the

input signal a shape more similar to the actual one.

The graphical results obtained in the case when the very narrow test signal is

used are shown in Fig. 5.15.

By inspecting the figure we can deduce that the shape of the test signal does not

affect the circuit response.
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Figure 5.12: (a) Input (and output) voltage, (b) output voltage and (c) current flowing

into the capacitor CL.
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Figure 5.13: (a) Input (and output) voltage, (b) output voltage.

On the other hand, by examining the circuit schematic diagram shown in Fig. 5.1

we can imagine that the parasitic capacitances Cgs of the input differential pair play

the most dominant role from the feedthrough point of view.

To quantitatively show their contribution we report in Fig. 5.16 the graphical

results of a significant test we have performed.

As shown in Fig. 5.17, we have connected two additional capacitors Ctest = 100 fF

in parallel with the respective intrinsic parasitic capacitances Cgs of the differential

pair in order to check whether a feedthrough increase would occur.

The direct examination of Fig. 5.16 allows us to realise the important role played

by the value of such parasitic capacitances.

As a consequence we need to reduce this value and a possible way of achieving
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Figure 5.14: (a) Current flowing into the capacitor CL and (b) magnification of the

region near the t axis (Positive very narrow input signal).

this goal is to resize the transistors of the input pair.

It can be shown that the intrinsic gate-source capacitance of a MOS transistor

when it operates in the triode region is

Cgs =
Cox WL

2

whereas when it operates in the active region is

Cgs =
2

3
WLCox

where Cox is the oxide capacitance per unit area from gate to channel whereas W

and L are the device width and the channel length respectively.
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Figure 5.15: (a) Input voltage, (b) output voltage and (c) current flowing into CL com-

pared to their respective signals obtained by filtering the input test signal (light colours).
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The above relationships show that the intrinsic gate-source capacitance of a MOS

transistor can be reduced by shortening its physical dimensions.

Thus, setting L = 0.35 µm (the minimum dimension) and decreasing the bias

current of the pair in order to keep the gain quite high, gives fairly good results

providing a significant feedthrough limitation.
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Figure 5.16: (a) Output voltage and (b) current flowing into CL compared to their

respective signals obtained by increasing the parasitic capacitances Cgs of the differential

pair (light colours).

However in practice such a solution would involve relevant drawbacks since it

would increase the mismatch between the input pair, leading to a substantial offset.

As a consequence the only way to improve the buffer performance without resiz-

ing the input transistors is to modify the basic circuit.
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Figure 5.17: Circuit schematic diagram of the non-linear buffer showing the two test capacitors Ctest = 100 fF.
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For purposes of illustration we present the alternative circuit shown in Fig. 5.18.

By inspecting the figure we can see that to overcome the feedthrough problem

the output stage has been moved and a source follower has been added in order to

separate the output capacitor from the parasitic capacitance of the input differential

pair.

However this new configuration has the disadvantage that the output stage is

not included in the feedback loop, and thus this circuit will not be further taken

into consideration.

5.3 The Non-Linear Buffer Final Circuit

In this section we will analyse the large-signal behavior of the final circuit imple-

menting the slew-rate limited non-linear buffer.

The schematic diagram of the circuit is shown in Fig. 5.19. By examining the

figure we can note that the new circuit is essentially the same as the basic circuit

that we have so far described and analysed with the exception of a source follower

consisting of a p-channel MOS with a p-channel MOS current-mirror load.

This source follower turns out to be particularly useful to overcome both the

problem of the parasitic feedthrough and the problem of the maximum output swing

which we mentioned in section 5.2.

In fact as far as the output swing is concerned, we can immediately observe that

the dc output voltage of the new circuit can even be set at 3 V since the magnitude

of the gate-source voltage of M13 is approximately equal to the gate-source voltage

of M7 whereas the sign is opposite so that the source voltage of M4 is nearly equal

to the output voltage.

As a result, in the new circuit the transistor M4 can still be biased in the active

region even if the dc output voltage is set at 3 V.

As mentioned before the source follower is able to reduce the capacitive feedthrough

of the input signal avoiding the direct coupling between the output capacitor CL

and the intrinsic gate-source capacitances of the input pair.

Moreover the feedthrough of the input signal now passes through the source

of M13 whose bias current can be freely set because it does not take part in the

slew-rate limitation process.

Hence we can increase the bias current of M13 in order to reduce its output
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Figure 5.18: Schematic diagram of an alternative circuit implementing the non-linear buffer.
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resistance (let us recall that ro = 1/gm) to provide a low-resistance path connecting

the output node and ground.

In order to verify what we have just stated, in the following section we will show

the results of the SPICE simulations for the new circuit.

5.4 Large-Signal Behavior of the New Circuit

5.4.1 Circuit Response to a Wide Test Signal

In this section we will analyse the circuit response to the first two test input signals

shown in Fig. 5.2, namely the signals displayed in Fig. 5.2(a) and Fig. 5.2(b), in

order to compare the large-signal behavior of the new circuit to the one of the basic

circuit.

Negative Test Signal

The circuit response to the test signal shown in Fig. 5.2(a) is illustrated in Fig. 5.20

whereas Fig. 5.21 shows the current flowing into the capacitor CL.

By inspecting the figure we can note that the behavior of the output voltage is

now very similar to the ideal behavior predicted by Mathematica simulations and

analysed in the previous chapters.

Moreover by comparing the graph of Fig. 5.21(a) showing the current flowing

into the capacitor CL with the analogous graph shown in Fig. 5.5(b) obtained by

simulating the basic circuit, we can observe a significant reduction of the current

changes due to the parasitic feedthrough.

In fact, as mentioned earlier, the transistor M13 is mainly concerned now with

the parasitic feedthrough.

To highlight the effect of the physical dimensions of M13 and its bias current

on the feedthrough of the input signal, we have shown in Fig. 5.22(a) the graphical

superimposition of the output voltage obtained by halving both the bias current

and the transistor width, and the output voltage obtained without performing any

change.

By inspecting both Fig. 5.22(a) and Fig. 5.22(b) we can deduce that the parasitic

feedthrough has little influence on CL (whose current is nearly the same in both
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Figure 5.20: (a) Input (and output) voltage, (b) output voltage.

cases) and that the output resistance as well as the intrinsic capacitances of M13

really play the role we had supposed in the previous section.

Finally let us note that the strong slew-rate limitation as well as the constant

current (50 nA) discharging the capacitor (shown in Fig. 5.20(b) and in Fig. 5.21(b)

respectively) are now very evident.

Positive Test Signal

The circuit response to the test signal shown in Fig. 5.2(b) is illustrated in Fig. 5.23

whereas Fig. 5.24 shows the current flowing into the capacitor CL.

By direct inspection of Fig. 5.24(b) we are able to recognise the two constant
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Figure 5.21: (a) Current flowing into the capacitor CL and (b) magnification of the

region near the t axis (Negative wide test signal).

currents (200 nA and 50 nA) charging and discharging the output capacitor.

Let us now calculate the slew-rate design values to be compared with those we

have measured directly on the curve shown in Fig. 5.23(b).

We have

SR1 =
|Idisch |

CL

=
50 nA

1.5 pF
' 0.033 V/µs

and

SR2 =
Ich

CL

=
200 nA

1.5 pF
' 0.1333 V/µs
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Figure 5.22: (a) Comparison between the output voltage obtained by changing the

physical dimensions and the bias current of M13 (light green) and the output voltage

without changes, (b) comparison between the currents flowing into the capacitor CL in

both cases (Let us observe that the graph (a) shows a descending ramp in the shape of

steps due to the numerical approximation performed by SPICE on the given data points).
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Figure 5.23: (a) Input (and output) voltage, (b) output voltage.

whereas the measured values are

SR1 ' 0.034 V/µs

and

SR2 ' 0.121 V/µs

which turn out to be in good agreement with the design values.

5.4.2 Circuit Response to a Narrow Test Signal

In this subsection we are interested in testing the large-signal circuit response in the

case when a narrow input signal is applied.
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Figure 5.24: (a) Current flowing into the capacitor CL and (b) magnification of the

region near the t axis (Positive wide test signal).

Negative Test Signal

The circuit response to the test signal shown in Fig. 5.2(c) is illustrated in Fig. 5.25

whereas Fig. 5.26 shows the current flowing into the capacitor CL.

By inspecting Fig. 5.25(b) as well as Fig. 5.26(b), we can observe that unlike the

analogous case shown in Fig. 5.9 where the circuit response is completely dominated

by the parasitic feedthrough, in this case we are still able to recognise the current

limitation (50 nA), even if it occurs only for a short time interval.
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Figure 5.25: (a) Input (and output) voltage, (b) output voltage.

Positive Test Signal

The circuit response to the test signal shown in Fig. 5.2(d) is illustrated in Fig. 5.27

whereas Fig. 5.28 shows the current flowing into the capacitor CL.

In this case, by direct inspection of Fig. 5.28(b) we are able to recognise both the

constant currents (200 nA and 50 nA) charging and discharging the output capacitor.

5.4.3 Circuit Response to a Very Narrow Test Signal

In this subsection we will show the large-signal response of the new circuit to a very

narrow input test signal.
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Figure 5.26: (a) Current flowing into the capacitor CL and (b) magnification of the

region near the t axis (Negative narrow test signal).

Negative Test Signal

The circuit response to the test signal shown in Fig. 5.2(e) is illustrated in Fig. 5.29

whereas Fig. 5.30 shows the current flowing into the capacitor CL.

By inspecting Fig. 5.29(b) as well as Fig. 5.30(b), we can still appreciate a very

short time interval where the current limitation occurs even if the constant-current

value we are able to identify (∼ 30 nA) is not really the nominal one (50 nA).
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Figure 5.27: (a) Input (and output) voltage, (b) output voltage.
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Figure 5.28: (a) Current flowing into the capacitor CL and (b) magnification of the

region near the t axis (Positive narrow test signal).
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Figure 5.29: (a) Input (and output) voltage, (b) output voltage.

140



5 – The Non-Linear Buffer: Transistor-Level Design and SPICE Simulations

100 200 300 400 500
t HnsL

-0.8

-0.6

-0.4

-0.2

0.2

0.4

iC HΜAL

(a)

100 200 300 400 500
t HnsL

-200

-100

100

200

300
iC HnAL

(b)

Figure 5.30: (a) Current flowing into the capacitor CL and (b) magnification of the

region near the t axis (Negative very narrow test signal).
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Positive Test Signal

The circuit response to the test signal shown in Fig. 5.2(d) is illustrated in Fig. 5.31

whereas Fig. 5.32 shows the current flowing into the capacitor CL.

By the examination of Fig. 5.32(b) we can see that even in the case of a very

narrow input test signal both the constant currents (200 nA and 50 nA) charging

and discharging the output capacitor are still appreciable.

5.4.4 Frequency Response of the New Circuit

0.001 0.01 0.1 1 10 100
f HMHzL-35

-30

-25

-20

-15

-10

-5

0

ÈTÈH
d
B

L

Figure 5.33: Magnitude in dB of the buffer

small-signal transfer function.

As mentioned at the end of the pre-

vious chapter (subsection 4.2.4), the po-

sition of the buffer dominant pole (i.e.

the buffer bandwidth) can have a sig-

nificant effect on the shape of the small-

signal transfer function of the whole

circuit.

The results obtained there by means

of Mathematica simulations founded on

an analytical model of our circuit, point

out that a buffer bandwidth greater than

1 MHz is required to avoid slow oscillations of the circuit baseline.

Thus we report in Fig. 5.33 the magnitude of the buffer small-signal transfer

function, to show that the circuit under examination is able to provide a bandwidth

unaffecting the small-signal behavior of the total circuit.

By referring to the figure we can observe that the buffer bandwidth is even

greater than 10 MHz so that the desired small-signal behavior of the whole circuit

is preserved.
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Figure 5.31: (a) Input (and output) voltage, (b) output voltage.
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Figure 5.32: (a) Current flowing into the capacitor CL and (b) magnification of the

region near the t axis (Positive very narrow test signal).
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Chapter 6

Design and Simulation

of the Full Front-End Amplifier

This chapter will be mainly concerned with the single-pulse characterisation and the

actual-circuit response to various sequences of pulses carrying an increasingly large

charge.

In fact our interest is to know whether the circuit really operates linearly and

whether the slew-rate limited buffer performs an output baseline stabilisation meet-

ing the given specifications.

Thus, several SPICE-simulation graphical results will be shown and analysed in

order to observe the actual-circuit behavior by varying the charge carried by each

pulse making up the incoming pulse train.

In particular the presented graphs will allow us to appreciate from a quantitative

point of view the baseline shift occurring in each of the considered cases.

Morover such simulations will concern both the total circuit designed to produce

output signals in the order of 150 ns (the “slow” circuit) and the circuit conceived

to give output signals in the order of 70 ns (the “fast” circuit) and able to provide

a higher counting rate.

Let us note that the two circuits are different from one another mainly due to

the different values of the components (resistors and capacitors) involved in the

feedback network of the preamplifier and the pulse shaper.

On the other hand both circuits are provided with the same BLH including the

slew-rate limited buffer described in the previous chapter.
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6.1 Behavior of the Slow Circuit

Before performing the characterisation of the voltage output signal produced by the

circuit under consideration, we will show the response of this circuit to a sequence

of charges Qin = 2 pC injected at rate r = 5 MHz.

This response has been obtained after excluding the BLH from the circuit in

order to point out the output baseline shift we would observe without a proper

baseline stabilisation.

2 4 6 8 10 12
t HΜsL1.5

2

2.5

vOUT HVL

Figure 6.1: Slow-circuit response (no BLH) to a train of pulses carrying a charge Qin =

2pC.

Figure 6.1 shows the circuit response to the first sixty incoming pulses.

By inspecting the figure a certain output-voltage drift can be observed even if

this graph does not allow us to appreciate the size of the drift due to the fact that

the output signals are very large (∼ 2.3 V) compared to the expected baseline shift.

On the other hand Fig. 6.2 shows a magnification of the graph region near the

circuit dc output voltage (∼ 2.8 V) and also displays the circuit response over a

larger time interval.

Thus we are now able to estimate the baseline shift, which is approximately

equal to 80 mV, a value much larger than the one dictated by the specifications

(1 mV ÷ 3 mV).

It should be pointed out that the 80-mV baseline shift occurring when the BLH

is disabled turns out to be fairly different to the value of about 500 mV predictable

on the basis of the Mathematica simulations reported at the end of Chap. 3 and

showing a baseline shift to peaking voltage ratio in the order of 22.5%, for the slow

circuit at rate r = 5 MHz.
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The reason of this disagreement is that the transconductor block itself is slew-

rate limited for large and fast output signals and this problem was not taken into

account in those Mathematica simulations.

5 10 15 20 25 30 35
t HΜsL2800

2820

2840

2860

2880

2900
vOUT HmVL

Figure 6.2: Magnification of the output-voltage region near the dc output voltage, show-

ing the voltage drift.

6.1.1 Characterisation of the Single Output Pulse

As mentioned earlier we are interested in testing the circuit linearity, namely to

verify whether the circuit operates in such a way that the output pulse peaking

voltage Vp can be considered directly proportional to the charge Qin carried by the

single incoming pulse.

In addition, it could also be interesting to check whether the output pulse peaking

time tp remains approximately constant by varying the incoming charge.

Thus some SPICE simulations have been performed in order to answer the two

preceding questions and the numerical results obtained in both cases by increasing

the incoming charge are shown in Tab. 6.1 and in Tab. 6.2 respectively.

Moreover, to obtain a direct understanding of the correlation between Vp and

Qin as well as tp and Qin, the respective data acquired with the simulations have

been represented in a graphical form and shown in Fig. 6.3(a) and in Fig. 6.3(b).

In both cases a fit to the data points has been obtained by using Mathematica

and a plot of the performed fits is given in Fig. 6.4 which also displays each fit

superimposed on the respective original data.

By referring to the fit shown in Fig. 6.4(a) we can directly appreciate the goodness

of the linear fit in the case under examination.
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Qin (fC) Vp (mV)

4 4.5715

100 118.59

200 237.62

500 592.56

1000 1185.4

1500 1770.1

2000 2292.3

2500 2702.7

Table 6.1: Peaking voltage data points.

Qin (fC) tp (ns)

4 18.96

100 18.98

200 18.99

500 19.19

1000 19.60

1500 19.62

2000 21.49

2500 25.74

Table 6.2: Peaking time data points.

However Pearson’s correlation coefficient can be calculated in order to obtain a

quantitative measure of the linear correlation between Vp and Qin.

A coefficient value close to zero indicates there is little linear correlation between

the variables but it does not exclude a significant nonlinear correlation.

By considering two generic variables x and y, the above coefficient is given by

r =

∑n

i=1 (xi − x̄) (yi − ȳ)
√

∑n

i=1 (xi − x̄)2
√

∑n

i=1 (yi − ȳ)2

where n is the sample size, x̄ and ȳ are the average values of the data related to the

respective samples.

Carrying out the calculation for the data points of Tab. 6.1 gives

r1 = 0.9986

which is a value very close to unity and indicates an almost perfect linear correlation

between the variables.

Although the correlation coefficient value obtained before approaches unity, a

unilateral hypothesis test should be performed to check whether the hypothesis

that the population from which the sample comes has a zero correlation coefficient

ρ (i.e. H0 : ρ = 0) must be rejected at a given significance level α, accepting thus

the hypothesis that it has a positive linear correlation (i.e. H1 : ρ > 0).

Since it can be shown that the correlation coefficient can be used to construct a
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Figure 6.3: (a) Peaking voltage and (b) peaking time versus incoming charge.

t statistic with n − 2 degrees of freedom (where n is the sample size) of the form

t(n−2) =
√

n − 2
r√

1 − r2
,

we should thus verify wheter

t(n−2) > t(n−2)
α

at a given α level.

If a level α = 0.01 is chosen, we must verify

t(6) > t
(6)
0.01 = 3.143

in the case under consideration.
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Figure 6.4: (a) Linear fit to the data points of Tab. 6.1 and (b) quadratic fit to the data

points of Tab. 6.2, superimposed on the respective original data.

Since t(6) = 45.800 is obtained from the sample data, we can deduce that there is

very significant positive linear correlation between Vp and Qin, at a level even much

greater than the given α = 1%.

Finally we report the linear fit equation obtained in the considered case, namely

Vp = 32.719 + 1.1075 Qin

by considering Vp and Qin as expressed in millivolts and femtocoulombs respectively.

Let us note that the value 1.1075 mV/fC (the slope of the linear fit) can also

represent a fairly good estimate of the linear gain of our circuit.

By referring now to the fit shown in Fig. 6.4(b), we can directly appreciate the

goodness of the quadratic fit in the case under examination.
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The quadratic fit equation obtained on the basis of the sample data is

tp = 19.324− 0.0221 Qin + 1.827×10−6 Q2
in

by considering tp and Qin as expressed in nanoseconds and femtocoulombs respec-

tively.

Finally let us note that the value t̄p = 20.32 ns we can calculate from the data

points can represent a good estimate of the average peaking time.

6.1.2 The Shape of the Single Output Pulse

After investigating the circuit linearity, it can be interesting to analyse the shape of

the full circuit output signal as well as the buffer output signal in the case when a

small charge Qin = 4 fC and a larger charge Qin = 2 pC are injected into the circuit.

By inspecting Fig. 6.5(a) and Fig. 6.6(a) we can see that a circuit output signal

of about 4.6 mV is obtained in the case Qin = 4 fC whereas an output signal of about

2.3 V is obtained in the case Qin = 2 pC.

In addition we can observe that the shape of the two signals is conserved.

On the other hand, comparing Fig. 6.5(b) to Fig. 6.6(b) shows that the shape

of the buffer output voltage is very different in the two cases since the dynamic

clipping performed by the buffer only occurs for fast and large signals.

Finally let us note that the buffer dc output voltage level (∼ 2.795 V) is slightly

less than the one of the whole circuit (∼ 2.801 V).

This slight difference stems from the fact that the transconductor block which

kept the circuit dc output voltage about equal to its reference voltage (2.8 V in

this case) is now connected to the buffer output and the low-frequency open-circuit

voltage gain Av0 of the basic differential amplifier used in the unity-gain feedback

configuration is finite.

In fact the corresponding buffer voltage gain is less than unity, since

Abuf
v0 =

Av0

1 + Av0

Hence a circuit optimisation has been performed (by increasing the basic dif-

ferential amplifier voltage gain) to obtain a value very near to the transconductor

block reference voltage.
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Figure 6.5: Pulse shape of (a) the full-circuit output voltage signal and (b) the buffer

output voltage signal, for an incoming charge Qin = 4 fC.

6.1.3 The Circuit Response to a Pulse Train

In order to quantitatively show the baseline stabilisation performed by the BLH

block, we will present the actual-circuit response to three sequences of pulses injected

at the same rate r = 5 MHz but carrying a different charge in each of the three

simulations.

By inspecting Fig. 6.7(b) we can note that a baseline shift approximately equal

to 375 µV occurs in the case when the charge carried by each incoming pulse is

Qin = 4 fC.

By examining Fig. 6.8(b) we can observe a baseline shift approximately equal to

1.8 mV when the charge carried by each pulse is Qin = 1 pC.

Finally by direct inspection of Fig. 6.9(b) a baseline shift approximately equal

to 2 mV can be appreciated when each incoming pulse carries a charge Qin = 2 pC.
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Figure 6.6: Pulse shape of (a) the full-circuit output voltage signal and (b) the buffer

output voltage signal, for an incoming charge Qin = 2pC.

Carrying out the calculation of the maximum baseline shift to the peaking voltage

ratio for the three preceding cases, gives the following values per cent

. 8.2% when Qin = 4 fC

. 0.15% when Qin = 1 pC

. 0.09% when Qin = 2 pC

which indicate that the buffer performs a non-linear dynamic clipping which

becomes increasingly evident as the charge of the incoming pulses is increased.
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Figure 6.7: (a) Slow-circuit response to a sequence of charges Qin = 4 fC injected at rate

r = 5MHz, (b) magnification of the region where the baseline shift occurs and (c) buffer

output voltage.
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Figure 6.8: (a) Slow-circuit response to a sequence of charges Qin = 1pC injected at rate

r = 5MHz, (b) magnification of the region where the baseline shift occurs and (c) buffer

output voltage.
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Figure 6.9: (a) Slow-circuit response to a sequence of charges Qin = 2pC injected at rate

r = 5MHz, (b) magnification of the region where the baseline shift occurs and (c) buffer

output voltage.
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6.2 Behavior of the Fast Circuit

In this section the fast circuit will be taken into consideration and its response to

a single incoming charge as well as a sequence of different charges injected at rate

r = 10 MHz will be shown and briefly analysed.

The performed SPICE simulations will also allow the comparison between the

results achieved in the case under examination and those obtained in the previous

section when the slow circuit were considered.

Before showing the shape of the single output pulse, we wish displays the circuit

response to a pulse train consisting of pulses carrying a charge Qin = 1.5 pC and

injected at rate r = 10 MHz in the case when the BLH was disabled.

2 4 6 8 10 12
t HΜsL

1.6

1.8

2.2

2.4

2.6

2.8

vOUT HVL

Figure 6.10: Fast-circuit response (no BLH) to a train of pulses carrying a charge Qin =

1.5 pC at a rate r = 10MHz.

Figure 6.10 shows the circuit response to the first one hundred and twenty in-

coming pulses but does not allow us to appreciate the size of the expected voltage

drift.

On the other hand from inspection of Fig. 6.11 (showing a magnification of the

asymptotic output voltage drift) we can estimate a baseline shift nearly equal to

45 mV for an output signal whose peaking voltage is about 1.2 V.

6.2.1 The Shape of the Single Output Pulse

The shape of the full-circuit output signal will now be analysed in the case when a

charge Qin = 4 fC and a chargeQin = 1.5 pC are injected into the circuit.
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5 10 15 20 25
t HΜsL2790

2800
2810
2820
2830
2840
2850
vOUT HmVL

Figure 6.11: Magnification of the output-voltage region near the dc output voltage,

showing the voltage drift (Qin = 1.5 pC, r = 10MHz).

By inspecting Fig. 6.12(a) and Fig. 6.13(a) we can see that a circuit output signal

of about 4 mV is obtained in the case Qin = 4 fC whereas an output signal of about

1.2 V is obtained in the case Qin = 1.5 pC.

On the other hand, comparing Fig. 6.12(b) and Fig. 6.13(b) points out once

again the different shape of the buffer output voltage, which is due to the dynamic

clipping performed by the buffer only in the case of fast and large enough signals.

6.2.2 The Circuit Response to a Pulse Train

In order to quantitatively show the baseline stabilisation performed by the BLH

block in the case of very narrow output signals, we will present the actual-circuit

response to a two sequences of pulses injected at the same rate r = 10 MHz but

carrying a different charge in each simulation.

By inspecting Fig. 6.14(b) we can note that a baseline shift approximately equal

to 250 µV occurs in the case when the charge carried by each incoming pulse is

Qin = 4 fC.

On the other hand, by examining Fig. 6.15(b) we can observe a baseline shift

approximately equal to 1.7 mV when the charge carried by each pulse is Qin = 1.5 pC.
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100 200 300 400 500
t HnsL2802

2803

2804

vOUT HmVL

(a)

100 200 300 400 500
t HnsL2794.3

2794.4

2794.5

2794.6

vO buf HmVL

(b)

Figure 6.12: Pulse shape of (a) the full-circuit output voltage signal and (b) the buffer

output voltage signal, for an incoming charge Qin = 4 fC (fast circuit).
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(a)

100 200 300 400 500
t HnsL
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2790

2792.5
2795

2797.5

vO buf HmVL

(b)

Figure 6.13: Pulse shape of (a) the full-circuit output voltage signal and (b) the buffer

output voltage signal, for an incoming charge Qin = 1.5 pC (fast circuit).
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2 4 6 8 10
t HΜsL2802

2803

2804

vOUT HmVL

(a)

2 4 6 8 10
t HΜsL2804.6

2804.7

2804.8

2804.9
vOUT HmVL

(b)

2 4 6 8 10
t HΜsL2794.3

2794.4

2794.5

2794.6

2794.7

vO buf HmVL

(c)

Figure 6.14: (a) Fast-circuit response to a sequence of charges Qin = 4 fC injected at

rate r = 10MHz, (b) magnification of the region where the baseline shift occurs and (c)

buffer output voltage.
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(a)
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t HΜsL
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(b)

2 4 6 8 10
t HΜsL
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vO buf HmVL

(c)

Figure 6.15: (a) Fast-circuit response to a sequence of charges Qin = 1.5 pC injected at

rate r = 10MHz, (b) magnification of the region where the baseline shift occurs and (c)

buffer output voltage.
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6.3 Baseline Fluctuations

In this section the full-circuit response to a train of random pulses will be taken into

account.

In fact all the simulations so far presented have been carried out by using se-

quences of pulses incoming at a constant rate in order to highlight the corresponding

asymptotic voltage shift.

However in practice output baseline fluctuations occur due to the random arrival

of the pulses coming from the detector.

Thus, by means of Mathematica simulations concerning the slow-circuit response

when the slew-rate limited buffer is disabled, we will show some typical circuit

responses to random sequences of incoming pulses.

As mentioned in Chap. 3, it is known that the number of events (pulse arrivals)

occurring in a time interval t follows the Poisson distribution so that the time

elapsing between two consecutive events follows an exponential distribution.

In particular let us recall that a counting process {X (t) | t ∈ R+ ∪ {0}} is called

a Poisson process with intensity λ(> 0) if:

1. X (0) = 0

2. {X (t)} has stationary1 independent2 increments

3. P [X (t + ∆t) − X(t) = 1] = λ ∆t + o(∆t)

4. P [X (t + ∆t) − X(t) ≥ 2] = o(∆t)

where o(∆t) is a function of ∆t such that

lim
∆t→0

o(∆t)

∆t
= 0

It can be shown that under the above assumptions X(t) has a Poisson distribu-

tion with parameter λ t

pn(t) = P [X(t) = n] = e−λ t (λ t)n

n!
n = 0, 1, 2, . . .

1A stochastic process {X (t) | t ∈ T} of real-valued random variables X(t) is said have stationary

increments if the pdf for X(s + t) − X(s) is the same for all s ∈ t such that (s + t) ∈ t.
2A stochastic process {X (t) | t ∈ T} of real-valued random variables X(t) where T is linearly

ordered is said have independent increments if for any t1, t2, t3, t4 ∈ T such that t1 < t2 < t3 < t4,

X(t2) − X(t1) and X(t4) − X(t3) are independent random variables.
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and

E[X(t)] = λ t

As a result the random variables Z1, Z2, . . . each representing the time elaps-

ing between two successive events in a Poisson process X(t) with intensity λ, are

independent exponential random variables with parameter λ.

For purposes of illustration, let us show what we have just stated, only for Z1.

Since

P [Z1 > t ] = P [X(t) = 0 ] = e−λ t

we have

FZ1
(t) = P [Z1 ≤ t ] = 1 − e−λ t

which implies that Z1 is really an exponential random variable with parameter λ.

By examining now the simulation results shown in Fig. 6.16(b) and in Fig. 6.17(b)

we can directly appreciate the expected baseline fluctuations.

We can note that in the case of an average counting rate of 5 MHz the pile-up

effect becomes evident due to the fact that even pulses separated by a time interval

shorter than 200 ns can occur.
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Figure 6.16: (a) Random sequence of incoming pulses (average pulse rate: 2MHz) and

(b) circuit response (slow circuit).
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Figure 6.17: (a) Random sequence of incoming pulses (average pulse rate: 5MHz) and

(b) circuit response (slow circuit).
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The thesis has presented the design of the final version of the CMAD chip for the

COMPASS experiment.

First, a thorough study of all the analog part of the circuit has been carried

out and an analytical model suitable for representing and predicting the circuit

behavior has been conceived in order to identify the main architecture limitations

and drawbacks.

It has been found that the most severe limitations to the circuit prototype came

from a non-linear buffer employed in the baseline holder (BLH) circuit.

Therefore a modified version of this buffer has been developed.

The improvement in circuit performance can be observed both when the circuit

deals with the main unipolar pulses coming from the detector and when it manages

sporadical pulses of opposite sign, even if in this case the circuit shows an adequate

behavior up to a maximum pulse rate of about 500 kHz.

In particular, in the case of the main unipolar pulses, with an output peaking

voltage equal to 2.3 V (incoming charge: 2 pC), a peaking time of 21 ns and a pulse

rate of 5 MHz an aymptotic baseline shift nearly equal to 2 mV has been predicted

on the basis of the performed transistor-level SPICE simulations.

Also the BLH sensitivity to the parasitic feedthrough of the input signal has

been considerably reduced by avoiding the direct coupling between the buffer load

capacitance and the intrinsic gate-source capacitances of the differential input pair.

Moreover, another important goal achieved has been a significant increase in the

full-circuit output swing.

The old circuit architecture allowed only a dc output voltage equal to 2 V whereas

the new architecture is able to provide a maximum output swing nearly equal to

3 V, without any transistor entering the triode region.

As far as the BLH power consumption is concerned, we wish to point out that
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the buffer consumes about 330 µW whereas the transconductor block only consumes

3 µW.

Furthermore the new buffer has an area which is only 40% with respect to the

one taken by the old buffer.

An enhanced version of the whole amplifier has already been designed. The

CSA and the pulse shaper have been modified in this version to obtain faster signals

providing a higher counting rate.

In fact the new version can work properly up to a rate r = 10 MHz still provid-

ing a baseline stabilisation within the given specifications, namely a baseline shift

approximately equal to 1.7 mV with an output peaking voltage of 1.2 V (incoming

charge: 1.5 pC), a peaking time of 10 ns and a rate of 10 MHz.

It should also be pointed out that the maximum counting rate is related to the

preamplifier and pulse shaper parameter optimisation.

Such an optimisation should be performed by taking into account both the time

length of the pulse and the circuit noise performance.

In fact although an increasingly narrow output pulse provides an increasingly

high maximum counting rate, we must recall that the faster the circuit the wider

its bandwidth and thus the larger the noise contribution involved in the signal

processing.

The circuit will be submitted to the foundry by the end of January 2006 (Austria

Mikro Systeme, AMS – 0.35 µm) whereas the integration of the ASIC in the final

application is foreseen for late 2006.
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