Analog Front-end Design in Deep Sub-micron CMOS Technology for Timing application in Pixel detectors

Lorenzo Piccolo

Università degli studi di Torino

13.04.2018, Presentazione Tesi
1 TIMESPOT

2 The Studied Front-end design

3 Simulations Results

4 Conclusions and Future Developments
1. TIMESPOT

2. The Studied Front-end design

3. Simulations Results

4. Conclusions and Future Developments
Measure rare events \rightarrow peak luminosity increase $(\sim 7 \times 10^{34} \text{cm}^{-2}\text{s}^{-1})$
- Pile-up events per bunch crossing increases from 27 to 200 \rightarrow loss in tracking efficiency
- Detectors radiation hardness must be up to $10^{17} \text{MeV/cm}^2 \text{n}_{eq}$
- HL-LHC will be operative by the end of 2025

100 pile-up events of a pp 13 TeV collision recorded by CMS on 14 Oct 2016
Measure rare events → peak luminosity increase \(\sim 7 \times 10^{34} \text{cm}^{-2} \text{s}^{-1} \)

Pile-up events per bunch crossing increases from 27 to 200 → **loss in tracking efficiency**

- Detectors **radiation hardness** must be up to \(10^{17} \text{MeV/cm}^2 \text{ } n_{eq} \)
- HL-LHC will be operative by the end of 2025
Measure rare events → peak luminosity increase (≈ $7 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$)

Pile-up events per bunch crossing increases from 27 to 200 → loss in tracking efficiency

Detectors **radiation hardness** must be up to $10^{17} \text{MeV/cm}^2 n_{eq}$

HL-LHC will be operative by the end of 2025
Measure rare events \(\rightarrow\) peak luminosity increase (\(\sim 7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}\))

Pile-up events per bunch crossing increases from 27 to 200 \(\rightarrow\) **loss in tracking efficiency**

Detectors **radiation hardness** must be up to \(10^{17} \text{ MeV/cm}^2 \text{ n}_{eq}\)

HL-LHC will be operative by the end of 2025
TIMESPOT: R&D a 4D Tracking Detector Prototype

- Requirements:
 - Pixel pitch $(55 \times 55) \mu m$
 - Time resolution on single hit $< 100ps$
 - Radiation resistance: 10^{16} to $10^{17} n_{eq}/cm^2$
 - System level solution \rightarrow sensor, front-end electronics and tracking logic
 - 10 INFN research unit involved
TIMPESPO: R&D a 4D Tracking Detector Prototype

Requirements:
- Pixel pitch $(55 \times 55) \mu m$
- Time resolution on single hit $< 100 ps$
- Radiation resistance: 10^{16} to $10^{17} n_{eq}/cm^2$

System level solution → sensor, front-end electronics and tracking logic
- 10 INFN research unit involved
TIMPESPOT: R&D a 4D Tracking Detector Prototype

Requirements:
- Pixel pitch \((55 \times 55)\mu m\)
- Time resolution on single hit < 100\(ps\)
- Radiation resistance: \(10^{16}\) to \(10^{17} n_{eq}/cm^2\)

System level solution → sensor, front-end electronics and tracking logic

10 INFN research unit involved
TIMPESBOT: R&D a **4D Tracking** Detector Prototype

- **Requirements:**
 - Pixel pitch \((55 \times 55) \mu m\)
 - Time resolution on single hit \(< 100ps\)
 - Radiation resistance: \(10^{16}\) to \(10^{17} n_{eq}/cm^2\)

- System level solution \(\rightarrow\) sensor, **front-end electronics** and tracking logic

- 10 INFN research unit involved
Shorter inter-electrodes distance
- Fast current signals
- Intrinsic radiation hardness

Two variants explored: Silicon (Università di Trento) and Diamond (INFN Perugia) based

Geometry impacts timing and electrical characteristics → interplay with electronics design
Shorter inter-electrodes distance

- **Fast** current signals
- Intrinsic **radiation hardness**

Two variants explored: Silicon (Università di Trento) and Diamond (INFN Perugia) based

Geometry impacts timing and electrical characteristics → interplay with electronics design
Shorter inter-electrodes distance
 - Fast current signals
 - Intrinsic radiation hardness

Two variants explored: Silicon (Università di Trento) and Diamond (INFN Perugia) based

Geometry impacts timing and electrical characteristics → interplay with electronics design
Pixel Architecture

- **Binary FE with Timing** $\rightarrow < 100\text{ps TDC}$
- High signal-rate \rightarrow **per-Pixel timing** measurement
- Pixel FE requirements \rightarrow low-noise, compact, low-power, rad-hard
- A novel **28 nm CMOS** process node is selected
- Binary FE with Timing $\rightarrow < 100\text{ps TDC}$
- High signal-rate \rightarrow per-Pixel timing measurement
- Pixel FE requirements \rightarrow low-noise, compact, low-power, rad-hard
- A novel 28 nm CMOS process node is selected
- Binary FE with Timing $\rightarrow < 100\text{ps TDC}$
- High signal-rate \rightarrow per-Pixel timing measurement
- Pixel FE requirements \rightarrow low-noise, compact, low-power, rad-hard
- A novel 28 nm CMOS process node is selected
- Binary FE with Timing $\rightarrow < 100\text{ps} \text{ TDC}$
- High signal-rate \rightarrow per-Pixel timing measurement
- Pixel FE requirements \rightarrow low-noise, compact, low-power, rad-hard
- A novel 28 nm CMOS process node is selected
The 28 nm CMOS Process

- **Novel technology** in the radiation detectors field
- More compact and power efficient → new integration possibilities
- **New materials**
- New lithography technique based on *interference masks* → *regular fabrics*
- Interconnections doesn’t scale properly → more parasitic effects → careful layout design
- Reduced power supply voltage → less headroom for analog circuits
The 28 nm CMOS Process

- **Novel technology** in the radiation detectors filed
- More compact and power efficient → new integration possibilities
- New materials
- New lithography technique based on interference masks → regular fabrics
- Interconnections doesn’t scale properly → more parasitic effects → careful layout design
- Reduced power supply voltage → less headroom for analog circuits
Novel technology in the radiation detectors filed

More compact and power efficient → new integration possibilities

New materials

- New lithography technique based on interference masks → regular fabrics
- Interconnections doesn’t scale properly → more parasitic effects
 → careful layout design
- Reduced power supply voltage → less headroom for analog circuits
Novel technology in the radiation detectors field
More compact and power efficient → new integration possibilities
New materials
New lithography technique based on interference masks → regular fabrics
interconnections doesn’t scale properly → more parasitic effects
→ careful layout design
reduced power supply voltage → less headroom for analog circuits
The 28 nm CMOS Process

- **Novel technology** in the radiation detectors filed
- More compact and power efficient \rightarrow new integration possibilities
- **New materials**
- New lithography technique based on **interference masks** \rightarrow **regular fabrics**
- Interconnections doesn’t scale properly \rightarrow more parasitic effects \rightarrow careful layout design
- Reduced power supply voltage \rightarrow less headroom for analog circuits
The 28 nm CMOS Process

- **Novel technology** in the radiation detectors filed
- More compact and power efficient → new integration possibilities
- **New materials**
 - New lithography technique based on *interference masks* → *regular fabrics*
- Interconnections doesn’t scale properly → more parasitic effects → careful layout design
- Reduced power supply voltage → **less headroom for analog circuits**
Outline

1 TIMESPOT

2 The Studied Front-end design

3 Simulations Results

4 Conclusions and Future Developments
Sensor modelled with parameters extracted from simulations

- Input amplifier: **Charge Sensitive Amplifier** with DC current compensation and DC voltage setting
- Discriminator: **Leading Edge Discriminator** with offset compensation
- **Two versions**: preliminary 65 nm one and 28 nm target one (currently CSA only)
Sensor modelled with parameters extracted from simulations

Input amplifier: **Charge Sensitive Amplifier** with DC current compensation and DC voltage setting

Discriminator: **Leading Edge Discriminator** with offset compensation

Two versions: preliminary 65 nm one and 28 nm target one (currently CSA only)
- Sensor modelled with parameters extracted from simulations
- Input amplifier: **Charge Sensitive Amplifier** with DC current compensation and DC voltage setting
- Discriminator: **Leading Edge Discriminator** with offset compensation
- Two versions: preliminary 65 nm one and 28 nm target one (currently CSA only)
Sensor modelled with parameters extracted from simulations

- Input amplifier: **Charge Sensitive Amplifier** with DC current compensation and DC voltage setting
- Discriminator: **Leading Edge Discriminator** with offset compensation
- **Two versions**: preliminary 65 nm one and 28 nm target one (currently CSA only)
Input current pulse Amplifier output Discriminator output
Charge Sensitive Amplifier (CSA)

- **Output voltage amplitude** \propto **input charge**
- **Constant peaking and falling times** \rightarrow **good timing performance**
- **Low noise**

Krummenacher Filter:
- Active feedback path \rightarrow pulse shape
- **DC current compensation** \rightarrow **input leakage current**
- **DC voltage setting** \rightarrow full range exploitation
- **50 nA** total current \rightarrow small power consumption impact

<table>
<thead>
<tr>
<th>G_c [mV/fC]</th>
<th>T_{pk} [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 nm</td>
<td>107 16.3</td>
</tr>
<tr>
<td>28 nm</td>
<td>121 9.5</td>
</tr>
</tbody>
</table>
Charge Sensitive Amplifier (CSA)

- **Output voltage amplitude** \propto **input charge**
- Constant peaking and falling times \rightarrow **good timing performance**
- **Low noise**

- **Krummenacher Filter:**
 - Active feedback path \rightarrow pulse shape
 - **DC current compensation** \rightarrow **input leakage current**
 - DC voltage setting \rightarrow full range exploitation
 - **50 nA** total current \rightarrow small power consumption impact

Table:

<table>
<thead>
<tr>
<th></th>
<th>G_c [mV/fC]</th>
<th>T_{pk} [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 nm</td>
<td>107</td>
<td>16.3</td>
</tr>
<tr>
<td>28 nm</td>
<td>121</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Telescopic cascode amplifier with split bias current branches

- Almost 60 dB gain
- Output buffer
- 2.5µA estimated total current → low power consumption
Telescopic cascode amplifier with split bias current branches
- Almost 60 dB gain
- Output buffer
- $2.5\mu A$ estimated total current → low power consumption

<table>
<thead>
<tr>
<th></th>
<th>A_0 [dB]</th>
<th>BW [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 nm</td>
<td>54.4</td>
<td>5.9</td>
</tr>
<tr>
<td>28 nm</td>
<td>59.8</td>
<td>13</td>
</tr>
</tbody>
</table>
● **Telescopic cascode amplifier** with split bias current branches
● Almost 60 dB gain
● Output buffer
● $2.5 \mu A$ estimated total current \rightarrow low power consumption

<table>
<thead>
<tr>
<th>A_0 [dB]</th>
<th>BW [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 nm</td>
<td>54.4 5.9</td>
</tr>
<tr>
<td>28 nm</td>
<td>59.8 13</td>
</tr>
</tbody>
</table>
Telescopie cascode amplifier with split bias current branches
Almost 60 dB gain
Output buffer
2.5µA estimated total current → low power consumption

<table>
<thead>
<tr>
<th></th>
<th>(A_0) [dB]</th>
<th>(BW) [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 nm</td>
<td>54.4</td>
<td>5.9</td>
</tr>
<tr>
<td>28 nm</td>
<td>59.8</td>
<td>13</td>
</tr>
</tbody>
</table>
2 stage amplification

- Inverter → digital output buffer
- Offset Correction Circuit: store offset variability inside C_{oc}
 - correct intra-channels variability
 - set input DC level
- **2 stage** amplification
- Inverter → **digital output buffer**
- **Offset Correction Circuit**: store offset variability inside C_{oc}
 - correct intra-channels variability
 - set input DC level
2 stage amplification

Inverter → digital output buffer

Offset Correction Circuit: store offset variability inside C_{oc}
 - correct intra-channels variability
 - set input DC level
● **1st** stage: low gain, differential
● **2nd** stage: high gain, single ended
● $t_d \sim 5\,\text{ns}$ average delay time
● 3 μA total current

<table>
<thead>
<tr>
<th></th>
<th>A_0 [dB]</th>
<th>BW [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>24.2</td>
<td>56.3</td>
</tr>
<tr>
<td>S_2</td>
<td>34.0</td>
<td>13.1</td>
</tr>
<tr>
<td>total</td>
<td>58.2</td>
<td>13.3</td>
</tr>
</tbody>
</table>
LE Discriminator: Transistors Level

- **1st stage:** low gain, differential
- **2nd stage:** high gain, single ended
- $t_d \sim 5\text{ns}$ average delay time
- 3 \(\mu \text{A} \) total current

<table>
<thead>
<tr>
<th></th>
<th>A_0 [dB]</th>
<th>BW [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>24.2</td>
<td>56.3</td>
</tr>
<tr>
<td>S_2</td>
<td>34.0</td>
<td>13.1</td>
</tr>
<tr>
<td>total</td>
<td>58.2</td>
<td>13.3</td>
</tr>
</tbody>
</table>
LE Discriminator: Transistors Level

- **1st stage:** low gain, differential
- **2nd stage:** high gain, single ended
- $t_d \sim 5\text{ns}$ average delay time
- 3 μA total current

<table>
<thead>
<tr>
<th></th>
<th>A_0 [dB]</th>
<th>BW [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>24.2</td>
<td>56.3</td>
</tr>
<tr>
<td>S_2</td>
<td>34.0</td>
<td>13.1</td>
</tr>
<tr>
<td>total</td>
<td>58.2</td>
<td>13.3</td>
</tr>
</tbody>
</table>
LE Discriminator: Transistors Level

- **1st stage**: low gain, differential
- **2nd stage**: high gain, single ended
- $t_d \sim 5\,\text{ns}$ average delay time
- $3\,\mu\text{A}$ total current

<table>
<thead>
<tr>
<th></th>
<th>A_0 [dB]</th>
<th>BW [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>24.2</td>
<td>56.3</td>
</tr>
<tr>
<td>S_2</td>
<td>34.0</td>
<td>13.1</td>
</tr>
<tr>
<td>total</td>
<td>58.2</td>
<td>13.3</td>
</tr>
</tbody>
</table>
Outline

1 TIMESPOT

2 The Studied Front-end design

3 Simulations Results

4 Conclusions and Future Developments
CSA successfully ported to the 28 nm node

- All transistors dimensions scaled by a 1/2 factor
- Regular fabrics → transistors split
CSA successfully ported to the 28 nm node

- All transistors dimensions scaled by a 1/2 factor
- Regular fabrics \(\rightarrow \) transistors split
CSA successfully ported to the 28 nm node

- All transistors dimensions scaled by a 1/2 factor
- Regular fabrics \rightarrow transistors split
Schematic transient simulation performed with Cadence-Spectre simulator → evaluation on the **total discrimination time** t_o

- Setup: 1.2 fC input charge, $V_{thr} = 10$ mV, discriminator baseline 200 mV
• **Schematic transient simulation** performed with Cadence-Spectre simulator → evaluation on the **total discrimination time** t_o

• Setup: 1.2 fC input charge, $V_{thr} = 10$ mV, discriminator baseline 200 mV
Current pulses: simulations of 1.2 fC charge linear development in the 3D Si model (by INFN Cagliari using Synopsys-TCAD tool)

5 different positions $\rightarrow \Delta_{sv} \approx 34$ ps
Current pulses: simulations of 1.2 fC charge linear development in the 3D Si model (by INFN Cagliari using Synoposis-TCAD tool)

5 different positions $\rightarrow \Delta_{sv} \approx 34$ ps
● t_o variation due to systematic large distance process variability

● Main effect on baseline \rightarrow offset correction ($\times 5$ improvement)

● $\sigma_p = 163\,\text{ps} \rightarrow$ per-chip calibration
Process Variations Contributions

- t_o variation due to systematic large distance process variability
- Main effect on baseline \rightarrow offset correction ($\times 5$ improvement)
- $\sigma_p = 163$ps \rightarrow per-chip calibration
Process Variations Contributions

- t_o variation due to systematic large distance process variability
- Main effect on baseline \rightarrow offset correction ($\times 5$ improvement)
- $\sigma_p = 163\, ps$ \rightarrow per-chip calibration
- Variation due to **nearby transistors variabilities**
 - Studied on discriminator differential cell \rightarrow discriminator delay time t_d
 - $\sigma_{mm} = 36$ ps
 - Offset correction $\rightarrow \times 20$ improvement
• Variation due to **nearby transistors variabilities**
• Studied on discriminator **differential cell** \rightarrow **discriminator delay time** t_d

 - $\sigma_{mm} = 36$ ps
 - offset correction $\rightarrow \times 20$ improvement
Variation due to **nearby transistors variabilities**

- Studied on discriminator **differential cell** → **discriminator delay time** t_d
- $\sigma_{mm} = 36$ ps
- offset correction $\rightarrow \times 20$ improvement
- Variation due to **nearby transistors variabilities**
- Studied on discriminator **differential cell → discriminator delay time** t_d
- $\sigma_{mm} = 36$ ps
- Offset correction $\rightarrow \times 20$ improvement
Noise Contribution

- **Noise induced jitter:** $\sigma_{tn} = \frac{SNR}{T_{pk}}$

- In 28 nm, for low range signals: $SNR \sim 14.5$,

- Simulated $\sigma_{tn} \sim 100$ ps RMS

- Optimization needed
Noise Contribution

- **Noise induced jitter:** $\sigma_{tn} = \frac{SNR}{T_{pk}}$
- In 28 nm, for low range signals: $SNR \sim 14.5$,
- Simulated $\sigma_{tn} \sim 100$ ps RMS
- Optimization needed
Noise Contribution

- **Noise induced jitter**: \(\sigma_{tn} = \frac{SNR}{T_{pk}} \)
- In 28 nm, for low range signals: \(SNR \sim 14.5 \),
- Simulated \(\sigma_{tn} \sim 100 \) ps RMS
- Optimization needed

\begin{align*}
\text{SNR} &= \frac{V_{peak}}{V_{noise}} \\
\text{Noise} &= \frac{1}{\sqrt{2}} \cdot \frac{V_{peak}}{\text{SNR}}
\end{align*}
Noise induced jitter: \(\sigma_{tn} = \frac{SNR}{T_{pk}} \)

In 28 nm, for low range signals: SNR \(\sim 14.5 \),

Simulated \(\sigma_{tn} \sim 100 \) ps RMS

Optimization needed
Time-walk

- **threshold crossing drift** related to signals **amplitude**
- Current pulses obtained assuming constant pulses **duration** → input charge: \((1 \div 10)fC\)
- Range saturation observed at 4 fC
- threshold crossing drift related to signals amplitude
- Current pulses obtained assuming constant pulses duration → input charge: $(1 \div 10) fC$
- Range saturation observed at 4 fC
Time-walk

- threshold crossing drift related to signals amplitude
- Current pulses obtained assuming constant pulses duration → input charge: \((1 \div 10) fC\)
- Range saturation observed at 4 fC
Time-walk: ToT Correction

- total variation 2.1 ns → time-walk correction needed (CFD or ToT)
- non monotonic response to be investigated
- Ideal ToT very linear → correction applicable in the monotonic range
Time-walk: ToT Correction

- **total variation 2.1 ns → time-walk correction needed** (CFD or ToT)
- non monotonic response to be investigated
- Ideal ToT very linear → correction applicable in the monotonic range
Time-walk: ToT Correction

- total variation 2.1 ns \rightarrow **time-walk correction needed** (CFD or ToT)
- non monotonic response to be investigated
- Ideal ToT very linear \rightarrow correction applicable in the monotonic range
Outline

1 TIMESPOT

2 The Studied Front-end design

3 Simulations Results

4 Conclusions and Future Developments
Conclusions and Future Developments

Conclusions

- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments

- Optimize for noise reduction
- Investigate time-walk correction techniques
- 28 nm discriminator implementation
- Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year
Conclusions and Future Developments

Conclusions

- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments

- Optimize for noise reduction
- Investigate time-walk correction techniques
- 28 nm discriminator implementation
- Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year
Conclusions and Future Developments

Conclusions
- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments
- Optimize for noise reduction
- Investigate time-walk correction techniques
- 28 nm discriminator implementation
- Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year
Conclusions

- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments

- Optimize for noise reduction
- Investigate time-walk correction techniques
- 28 nm discriminator implementation
- Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year
Conclusions

- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments

- Optimize for noise reduction
- Investigate time-walk correction techniques
 - 28 nm discriminator implementation
 - Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year
Conclusions and Future Developments

Conclusions

- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments

- Optimize for noise reduction
- Investigate time-walk correction techniques
- 28 nm discriminator implementation
- Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year
Conclusions and Future Developments

Conclusions

- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments

- Optimize for noise reduction
- Investigate time-walk correction techniques
- 28 nm discriminator implementation
- Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year
Conclusions

- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments

- Optimize for noise reduction
- Investigate time-walk correction techniques
- 28 nm discriminator implementation
- Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year
Conclusions and Future Developments

Conclusions

- Good results for the 65 nm design
- The CSA design was successfully ported in 28 nm
- Good timing reliability for signal, mismatch and process variations

Future Developments

- Optimize for noise reduction
- Investigate time-walk correction techniques
- 28 nm discriminator implementation
- Produce 28nm layout
- Simulation with parasitics and optimization
- A test chip for analog blocks will be produced later this year