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Outline

● Summary and outlook

● Analog design in 65nm CMOS technology

● CMS pixel detector upgrade plans

● Noise optimization

● Feedback implementation

● Analog design in 65nm CMOS technology

● Front-End architectures
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CMS Silicon Pixel Detector

● 3 barrel layers (BPIX) + 2 disks each side (FPIX)

● R = 4.4 cm, 7.3 cm and 10.2 cm, |η| < 2.5, ~ 1 m2, 66 Mpixels 
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LHC timeline

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 ...

LS1 LS2 LS3

70% 
nominal

1x 
nominal

2x 
nominal

10x 
nominal

4 TeV 6.5 – 7 TeV 7 TeV 7 TeV

HL-LHC 
upgrade

● nominal luminosity → 1034 cm-2 s-1 ,  23 fb-1 per year in 2012 

luminosity

beam 
energy

● HL-LHC upgrade → 1035 cm-2 s-1 , foreseen 300-500 fb-1 per year 

- unprecedented Pile-Up (PU) conditions 

CMS Phase1
pixel upgrade

CMS Phase2
pixel upgrade

- unprecedented radiation levels 
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Phase2 Pixel Upgrade - motivations

● We want to maintain or improve tracking performance in terms of:
- spatial resolution and tracks separation → reduced pixel size

● HL-LHC upgrade will introduce unprecedented operating conditions

→  design of a new pixel readout chip required !

- hit efficiency > 99.9% → reduce the data loss  
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Phase2 Pixel Detector

- BPIX: 3 → 4 layers

- possible extension in the disk part

● sensor choice not yet finalized
- Very likely planar silicon sensors in the outer layers 3 and 4

● CMS Phase1 pixel detector (end of 2016)

- FPIX: 2 → 4 disks
- pixel ASIC (ROC): PSI46 → PSI46DIG

● CMS Phase2 pixel detector (~2022)

- improvement in granularity →  reduced pixel size

- geometry similar to Phase1 (4 barrel layers) 

- new pixel ASIC !
- thinner sensors to increase radiation tolerance

- Ongoing studies for layers 1 and 2 (planar sensors? 3D sensors? )
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RD on 65nm technology

● why 65nm ?

-  demonstrated to be radiation tolerant up to 2 MGy, better than 130nm              
     (to be confirmed up to 10MGy)  
-  higher integration density  

-  mature technology (introduced ~10years ago, long term availability) 

● Electronics requirements:

- speed, low-noise, low-power consumption, rad. tolerance

- more on-chip intelligence and local data storage capabilities 

- sensor-independent front-end electronics  

-  improved speed

-  low power (1.2V supply)  
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CMOS submicron technologies

● Short channel effects degrade analog performances

-  Threshold voltage variation with Vgs,L
-  Output impedance variation

-  Low output resistance

-  Increased noise effects

● Usually  L
min

 is not used due to
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Threshold voltage

● Very different trend between 350nm technology and the others 
due to halo doping
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Output conductance

L
min

 → Very different behavior

250 nm CMOS technology65 nm CMOS technology

usually not chosen
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Output signal
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Charge Sensitive Amplifier

INPUT
TRANSISTOR
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CSA noise analysis 

● Crucial to have the best SNR (Signal to Noise Ratio)
● Expressed in ENC (Equivalent Noise Charge in units of electron 

charge)

● Main noise sources:

-  Series noise

-  Parallel noise

-  Flicker noise
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CSA noise analysis 

Constraints:

Noise increases reducing 
power consumption

● Peaking time T
p
 = 12.5 ns

● C
detector

 = 100 fF
● I = 1.6 uA

Noise increases with the 
channel length

Constraints:
● W = 8um, L = 130 nm
● Peaking time T

p
 = 12.5 ns

● C
detector

 = 100 fF
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CSA noise analysis 

Constraints:

ENC linearly dependent on 
sensor capacitance

● Peaking time T
p
 = 12.5 ns

● L = 130 nm
● I = 1.6 uA
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Studied architectures

● Passive resistors are not used in the real implementation of 
Integrated Circuits 

- Power consumption

● Two different feedback network implementations compared 

- Linearity

- Noise

- Mismatch effects

● Time-variant Charge Sensitive Amplifier
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Feedback implementation 

● Total stage power consumption 2  μW
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Linearity

MIP produces ~ 100 
e-/h pairs per μm of 
silicon on average

Pixel thickness ~ 
100 μm 

Average signal ~ 
10000 e-
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Transient noise

RMS ~ 3 mV ~ 180 e-

    Threshold = 15 mV ~ 900 e-
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Mismatch simulation

● Mismatch: transistors with identical design have electrical 
parameters fluctuations

● Manufacturing fluctuations:

➢ Dopant concentrations
➢ Oxide thickness

● Monte Carlo mismatch analysis:

Single transistor parameters extracted from their distributions

Mismatch simulation in 65 nm
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Mismatch simulation

● Huge baseline fluctuations
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Mismatch simulation

● Reduced mismatch effects

● Doubled W,L values
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Mismatch simulation

● Mismatch effects more than halved

● Further optimization
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Leakage compensation

● Leakage current compensated up to 50 nA
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Leakage compensation

● Leakage current compensated up to 50 nA



26

Time-variant CSA

● Signal rise time consistent with requirements



27

Conclusions

● Time variant Charge Sensitive Amplifier is again a suitable 
choice

●  Similarities in terms of:

-  Power consumption ( ~ 2 μW)  

-  Noise 

●  Differences in terms of:

-  Mismatch effects  
-  Leakage compensation

●  In principle all these architectures can be used in the upgrade
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Next steps

● Connect the preamplifier to the comparator to build a complete 
analog Front-End chain

-  Estimation of the area occupation

● Analyze more in detail the time-variant Charge Sensitive 
Amplifier

● Realization of the layout of these architectures
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Thanks for your attention!



30

References

● C.Enz,  F. Krummenacher, E. Vittoz, "An analytical MOS transistor model 
valid in all regions of operation and dedicated to Low-Voltage and Low-
current applications", article

● B.Razavi, "Design of analog CMOS integrated circuits", 
McGrawHill

● F. Silveira, D.Flandre, P.Jespers, "A g
m
/I

D
 based methodology for the 

design of CMOS analog circuits..." , IEEE 1996

● L.Rossi, "Pixel Detectors from fundamentals to Applications", 
Springer

● P. O'Connor, "Future trends in Microelectronics - Impact on detector 
readout"



31

Backup slides
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MOS operating regions

● IC < 0.1   WEAK INVERSION

● The Inversion Coefficient discriminates between the different 
operating regions:

WEAK

MODERATE

STRONG

● 0.1 < IC < 10   MODERATE INVERSION

● IC > 10    STRONG INVERSION
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CMOS submicron technologies

-  Threshold voltage variation with Vgs,L

● Short channel effects degrade analog performance

-  Mobility reduction

-  Velocity saturation

-  Output impedance variation

● Best compromise between speed and consumption -> Moderate 
inversion region
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Feedback implementation

● Total stage power consumption ~ 2 μW
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First architecture - Linearity
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First architecture - Mismatch

20 mV
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