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What is Dark Matter?
Dark matter is believed to be composed by 
some form of a non-luminous* non-
baryonic particles.

The only observable interaction with 
normal baryonic matter is through it’s 
gravitational field.

*Non-Luminous ⇒ No interaction with e-m 
field

[1]
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Dark Matter phenomenology
There are many phenomena that are only 
explainable using DM, some of these are:
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There are many phenomena that are only 
explainable using DM, some of these are:
o Gravitational Lensing; [1]
o Galaxy Rotational Speed; [2]
o Cosmic Microwave Background

anisotropies. [3]

Dark Matter phenomenology
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How do we detect Dark Matter?
o Direct detection via shielded underground detectors;
o Indirect detection via WIMP annihilation signals captured by 

satellites, balloons or ground-based telescopes;
o Direct production of dark matter in high energy particle 

accelerators.
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What is DarkSide?

Ultra-pure water 
tank used as an 
active muon veto

Liquid Boron 
scintillator tank 
used as an active 
neutron veto

Base diameter = 15 m

Height = 14.65 m

20 ton liquid Argon 
TPC tank used for 
detecting DM, 
operating @

T = 87 K
SiPM
array

8 m

[4]
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DarkSide PhotoDetector Module (PDM)

o Basic PDM: 24 independent sensors
o Each quadrant has 6 SiPMs: 2 in series and 3 in parallel
o Total sensing area: 24 cm2

o SNR @ 77K for 1 PE: 10
o Time resolution: 20 ns
o Channel power consumption: 250 mW

OV = 5 V (VBD = 21.5 V)
SPAD with 30 µm cell size
DCR ≈ 5 × 10-3 Hz/mm2

[5]
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DarkSide current DISCRETE Front-End

o 4 independent TIAs followed by a Summing Amplifier
o Bipolar SiGe operational amplifiers
o Single analog differential output per channel
o Power consumption: 250 mW

[5]
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INTEGRATED vs DISCRETE Front-End
IC vs discrete PROS:

o Simplification of chip handling: 1 component vs 40 per channel
o Improved performance using an ad-hoc design of the core building blocks
o Less interconnection between parts with local signal processing and multiplexing
o Greatly diminished power consumption: 77 mW vs 250 mW

IC technology isn’t modelled outside military temperatures -55 ÷ 125 °C

Device characteristics are extrapolated by the simulator

Cryogenic operation could be different from simulations

PROBLEM:
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Cryogenic CMOS: advantages and issues

DISADVANTAGES

o Threshold voltage increases
o Hot electron effect increases (more 

energetic carriers)

ADVANTAGES

o Mobility increases
o Transconductance* increases
o Thermal noise decreases

o Quicker Si-SiO2 interface degradation
o Oxide trapped carriers ⇒ threshold 

voltage shift
o Worsened Gate leakage current (due to 

channel interface degradation)

Higher SNR

∗= 𝑔𝑚 = 2𝜇𝐶𝑜𝑥
𝑊

𝐿
𝐼𝐷𝑆
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DarkSide CMOS Front-End: Top Level

0.    DM-LAr scattering generates a photon

1. SiPM detects this photon

2. TIA amplifies signal from SiPM

3. Amplified signal goes to 
summing amplifier

4. Summed signals are output 
to processing circuitry
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o Class-AB amplifier
o Low Bias currents
o High output range
o Gain scalability
o Dual Rail 2.5V supply

DarkSide CMOS Front-End: Single Op-Amp
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o Thin oxide, wide area, input transistors for better transconductance and lower noise

o Voltage drop on input transistors reduced by using cascode transistors

o All other transistors designed with a thick oxide to enable 2.5V operation @77K and to 

generate lower noise

DarkSide CMOS Front-End: Single Op-Amp

𝑣𝑛,𝑓
2 =

𝐾𝑓(𝐼𝐶 , 𝐿)

𝐶𝑜𝑥𝑊𝐿

1

𝑓𝛼

Flicker Noise
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𝑣𝑛,𝑤
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o N1 acts as a common  gate 
amplifier

o N3 is used as a common 
source amplifier to reduce 
the input impedance

o P2 mirrors out the amplified 
current to P3

o P3 outputs the current to a 
shaper which transforms 
the current in a measurable 
voltage
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CMOS Front-End: 
Regulated 
Common Gate
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Discrete FE simulations
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Temperature* = 300K

► Output signal ► Superimposed noise
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Characteristics

o Vpp = 31.9 mV
o Vnoise* = 16.1 mV
o SNR* ≈ 2
o Jitter* = 213 ns
o Fco = 487 kHz
o Power = 188 mW
o Dynamic Range = 50

18/25

* Caveat: available SPICE files of 
LMH6629/4 do not model noise 
behavior at cryogenic 
temperatures.



OPAMP FE simulations
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o Vpp = 25.56 mV
o Vnoise = 8.16 mV
o SNR = 3.13
o Jitter = 145 ns
o Power = 71.47 mW
o Dynamic Range = 35

Temperature = 77K Temperature = 300K

o Vpp = 24.50 mV
o Vnoise = 2.67 mV
o SNR = 9.19
o Jitter = 56 ns
o Power = 79.96 mW
o Dynamic Range = 45



RCG FE simulations

Raffaele Aaron Giampaolo 20/25

o Vpp = 11.54 mV
o Vnoise = 0.9 mV
o SNR = 12.78
o Jitter = 59.8 ns
o Power = 77.72 mW
o Dynamic Range = 105

o Vpp = 18.2 mV
o Vnoise = 1.86 mV
o SNR = 9.78
o Jitter = 50.1 ns
o Power = 80.2 mW
o Dynamic Range = 30

Temperature = 77K Temperature = 300K



DarkSide FE simulations Summary
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o Submitted LAYOUT

o Technology UMC 110 nm

o ETA: end of April

o 1 mm x 2.5 mm

o OPAMP: 21 pads used

o RCG: 31 pads used
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CMOS FE LAYOUT
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DS20K CMOS FE
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To-Do List
● Characterize the physical front-end
● Biasing study
● Individual cryogenic circuit parts testing
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DS20K CMOS FE
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Thank you for your attention
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