
Readout boards
for ALICE and ATLAS experiments

Davide Falchieri

Torino Workshop: 28 November 2013

Outline

•  Case study 1: ALICE SDD readout board

•  Case study 2: ATLAS IBL readout board

Case study (1):
readout board for ALICE SDD

8 6 SDDs per ladder

22 14 Ladders
23.8 14.9 Radius (cm)

Layer 4 Layer 3

SDDs equip 2 out of 6 cylindrical layers of the ALICE ITS

SDD readout architecture (each half-ladder)

PASCAL
AMBRA
CARLOS (data compression)
GOL (Gigabit Optical Link) + QPLL

40 MHz clock
Programming & monitoring"
Data output & monitoring

SDD front-end and readout
electronics

Design specifications
 dynamic range: up to 8 MIPs
 noise: 250 e-

 readout time < 1ms
 power consumption:

<5 mW/channel
 chips thinned to 150µm

PASCAL (64 channels)
 Preamplifier (τ ~ 40ns, RC-CR2 shaping)
 Analog memory (64 ×256 cells)
 32 10-bit linear ADC (1 every 2 channels)
) AMBRA (64 channels)
 Four 16 kB buffers
 Baseline equalization
 10 to 8-bit compression
CARLOS (1 for 8 AMBRAs)
 Zero suppression and Compression of data

from 1 SDD with a 2D – 2-Threshold
algorithm (programmable parameters)

 Interface with AMBRAs, GOL and
CARLOS-rx (FPGA based board, in counting
room, which links to DDLs)

 FEE monitoring (SEU) time-multiplexed
with data on the 16-bit output data bus

 Protections against radiation effects (parity
check)

1

12

CARLOSrx
data

concentrator
cards:
two 9U
boards

260 SDD detectors 24 CARLOSrx boards

CARLOS
end ladder

data

clock

serial link

Trigger
system

DAQ:
SIU, DIU
DRORC

VME

CARLOS
end ladder

data

clock

serial link

Trieste 100 m.

SDD readout chain

CARLOSrx readout board (2005)

DDL

TTCrq

busy

6 SDD
modules

Input bandwidth: 12 x 800 Mbit/s
Output bandwidth: 2 Gbit/s

On-line data decoding, formatting and re-encoding with a different format

6 SDD
modules

dataflow

SIU

TTCrq

data

CARLOSrx firmware

Production: 2005-2006

•  HW design: Davide Falchieri
•  Installed in CR4 in 2007
•  3 Xilinx VirtexII-PRO
FPGAs

Production: 2011

•  HW design: Luca Toscano,
Francesco Rotondo
•  Installed in CR4 in 2013
•  5 Xilinx Virtex5 FPGAs

From CARLOSrx to SuperCARLOSrx

Why SuperCARLOSrx ?
Several reasons:
•  Virtex-II PRO devices no longer supported by ISE after release 10
(Xilinx defines this family as a mature and discontinued product);
•  Resources usage on the 3 Virtex-II PRO was around 60%: not much
space for adding new firmware features
•  A new algorithm (common mode subtraction) had to be inserted in the
data path and simply CARLOSrx had no enough resources for the job

CARLOS CARLOSrx
zero suppressed

data

CARLOS SuperCARLOSrx
raw data

common mode filter + data compression

From Virtex-II PRO to Virtex5

Device Array Slices DSP48E Block
RAM
(Kb)

PowerPC RocketIO I/O
banks

User
I/O

FX30T 80x38 5120 64 2448 1 8 12 360

FX70T 160x38 11200 128 5328 1 16 19 640

FX100T 160x56 16000 256 8208 2 16 20 680

FX130T 200x56 20480 320 10728 2 20 24 840

FX200T 240x68 30720 384 16416 2 24 27 960

Virtex-5 FPGA slices are organized differently from previous generations. Each
Virtex-5 FPGA slice contains four LUTs and four flip-flops (previously it was two

LUTs and two flip-flops)

From CARLOSrx to SuperCARLOSrx (2011)

5 Xilinx FPGAs: Virtex5 FX70T
Serial connections running @ 2.5 Gb/s

superCARLOSrx dataflow

SIU

TTCrq

data

SuperCARLOSrx clock distribution

LHC 40 MHz
clock from

TTCrq

SuperCARLOSrx FPGA configuration

left

right

unpacker

unpacker

encoder

fifo_core_17
16 17-bit words

fifo_unpacker
512 16-bit words

8

8

16

16

16

16

17

16

8/10

8/10

CM
SUB

CM
SUB

2D

2D

16

16
8

8 10

10

10

10

10

32

32
left

right

CF

CF

B sub

B sub

10

17

encoder

RAM

32

Block diagram for a single module

CARLOS

80 MHz
SDD

brand new blocks

scheduler

RAM RAM RAM

16

Virtex-5 FXT

RocketIO

Serial
Data

80 MHz

16

16

16 16 16

16

Virtex5

RAM RAM RAM

TTCrq

SIU

Virtex5

Virtex5

RAM RAM RAM

Virtex5

RAM RAM RAM

Virtex5

Virtex5

RAM RAM RAM

Virtex5

VME
controller

SuperCARLOSrx

Serial Links

Why a common mode noise filter ?

Common mode noise

Border channels •  The common mode noise is a
coherent fluctuation of a group of
electronic channels induced by
external sources
• Vertical bands on Raw Data Plot

•  Border channel effect due to
microcables proximity

Hybrid

Vertical bands

∑

∑ -

=

j
j

j
j i ij

i s

s p a

c 2

) (

The Algorithm

j

i

Correlation
coefficient for each
channel

Evaluated on-line
event-by-event

common mode and pedestal subtraction

Single Hybrid

Common mode
shift for
each time bin

no hits and
dead channels

Average over a
number of events

pedestal

aij

pi

-

Data
valid *

-

ci

Control
Unit

FIFO

+

m

÷ sj

aij - pi

FPGA Implementation

RAM

DSP

I/O
No hits and
dead channels

Pedestal sub

Common mode shift
slices

Single Hybrid Test results

Mean = 2.88
RMS = 0.45
Mean = 2.88 Mean = 2.24
RMS = 0.45 RMS = 0.25

 Minimize border channel effects

Common mode reduction algorithm tuning

•  Software validation is in progress in Torino (Luciano Ramello)
•  Hardware coding of the algorithm started

SuperCARLOSrx Summary

•  A new HW board is in place

•  A lot of new firmware features can be implemented and tested

Case study (2):
readout board for ATLAS IBL

Atlas Pixel Detector Overview

Atlas Pixel Detector Overview

Innermost detector: tracking and vertexing
3 barrel layers - b-layer closer the beam pipe (<r>=5cm)
80M pixels in total (50 um x 400 um)

front-end chip : FE-I3 (2880 channels x chip)
basic unit: module (sensitive region coupled with 16 FE-I3)
1774 modules in total

one Module Control Chip (MCC) x module different readout schemes:
b-layer: 2 link @ 80 Mb/s (160 Mb/s)
layer 1: 1 link @ 80 Mb/s
layer 2: 1 link @ 40 Mb/s

Each off-detector readout unit handles up to 160 MB/s
(8 links @ full speed = 1 S-Link)

on-detector
front-end chips

optical
 link

BOC ROD

VME crate

DAQ

timing and
trigger

Readout electronics for the Pixel Detector

8
on-detector

front-end chips

1
S-Link

Old BOC-ROD pair

Old BOC

S-Link

The BOC card serves as
the optical interface for
the off detector part and
provides the complete

timing functionality for
the ATLAS pixel detector

and its readout

8 FORMATTER

1 EFB

1 ROUTER

1 RCF

Old ROD

11 FPGAs + 5 DSPs

Pixel Detector Upgrade: Inner Barrel Layer (IBL)

Major Goals:
•  strengthen the tracking capability by increasing both redundancy and precision;
•  preserve the performances of the Pixel Detector for effects due to the increased

luminosity expected after LHC upgrades (greater pile-up and radiation doses).

12 millions pixels
Pixel size : 50 x 250 um
 <R> = 33 mm
|Z| < 33.2 cm
14 Staves
224 Modules

New front-end electronics for IBL
A new front-end ASIC, called FeI4, has been designed to face the larger

occupancy as well as to manage the increased bandwidth expected for IBL.

pixel array: 336x80 pixels
Each FeI4 pixel contains an independent, free
running amplification stage with adjustable
shaping, followed by a discriminator with

independently adjustable threshold. The chip
keeps track of the firing time of each discriminator
as well as the time over threshold (ToT) with 4-bit

resolution, in counts of an externally supplied
clock, nominally 40 MHz. Information from all

discriminator firings is kept in
the chip for a latency interval, programmable up
to 255 cycles of the external clock. Within this

latency interval, the information can be retrieved
by supplying a trigger. The data output is serial
over a current-balanced pair (similar to LVDS).

The primary output mode is 8b/10b encoded with
160 Mb/s rate. The FE-I4 is controlled by a serial
LVDS input synchronized by the external clock.

When specifying the design of the DAQ chain for the IBL, the first open
question was whether the existing ROD was sufficient or if a new one
was needed. The existing ROD firmware could be modified to operate
with the IBL module data format; however, the hardware of the board is
designed to operate with a maximum of eight 160 Mb/s input links (from
the modules) to one output S-Link, while, in order to respect the IBL
natural modularity, thirty-two 160 Mb/s links to four S-Links have to be
handled. This consideration, together with the 4 MB/s bandwidth
limitation on the VME bus and the obsolescence of the components led to
the decision to design a new BOC-ROD pair.

Proposal of a new off-detector readout

8 FORMATTER

1 EFB

1 ROUTER

Transition to the new ROD

DSP

RCF

2 FPGA

1 FPGA

New IBL ROD

1 FPGA
with PowerPC
inside: Virtex5

2 FPGAs:
Spartan6

Fewer devices implementing the functionality of 4 old RODs
14-layer PCB

S6A V5 S6B

Configuration
The FPGAs can be
configured in 2 ways:
•  via JTAG from the
front panel,
•  directly via VME by
a VME CPU (we use
STAPL files with
JAM player)

Clock distribution

TIM BOC ROD (40 MHz clock)

Power supply distribution

32
on-detector

front-end chips

4
S-Links

New BOC-ROD pair

BOC: optical interface ROD: data processing

Total I/O bandwidth: 5.12 Gb/s
Faster calibration link by using Gb Ethernet instead of the VME bus for data transfer

IBL ReadOut system summary
Number of IBL Staves /ROD-BOC pair 14

DAQ Modules per ROD-BOC pair 16

FE-I4s chip per ROD-BOC pair 32

Total # of FE-I4s in IBL 448 (32*14)

Number of Pixels per FE-I4 26880

Total # of read-out channels ~12 M

IBL Back Of Crate card

Sampling @ 640 MHz with ISERDES,
GTPs to support 4-Slinks @ 2 Gb/s
Individual output delay on serial lines to FeI4: 255 * 28ps steps

Data flow during physics runs

data from
front end

DAQ

DAQ

data from
front end

triggers
from TIM

triggers to
front end

Data flow during calibration runs

data from
front end

data from
front end

triggers to
front end

The calibration is controlled by the PPC which drives the calibration
scan configuring the FeI4s and sending triggers

As for the Pixel Detector, the calibration of the IBL detector is performed by repeating
relatively short (~100) series of events, recorded while injecting a known charge into each
pixel and with different settings of the front-end parameters (e.g. different thresholds or
different pre-amplifier feedback currents). This sequence, called calibration scan, generates a
very large number of events, which have to be analyzed in order to extract the histogram
showing how many times each pixel has been fired for a given setting. For this reason, in
calibration mode, the data stream coming from the sensor is not sent over the S-Link, but pre-
processed in the ROD, where the relevant histograms are produced. At the end of the scan, the
histograms are transferred to an external farm via Gb Ethernet for fitting and archiving.
IBL ROD executes only the calibration loops to accumulate the per-pixel occupancies, sums
of time-over-threshold (ToT) and sums of ToT2 parameters. Then histograms are created and
saved on-the-fly on RAMs and eventually transferred via Gb Ethernet to an off-line high-
performance computer.

Calibration runs

row/col
to addr

control

dual-port
RAM

data from
8 FE-I4s

+1

+ToT

+ToT2 x2

ToT

addr

read

write

Σ	

Σ ΤοΤ	

Σ ΤοΤ2	

A threshold scan determines the threshold µ and noise of a pixel. This is achieved
by injecting a defined charge Q multiple times into the pixel and counting the
resulting hits. One then iterates over several charge steps (typically 100) by
changing the voltage Vcal and creates a histogram

rx
decoder boc2rod gatherer

A
simple
EFB-0

S6

PPC

serial
port

ROD
bus

V5

ROD

xc

histo
0 12b @

80 MHz

BMF_SOUTH

BOC
ETH

ETH

RAMBLOCK

INMEM FIFO

MB

register
block

DDR2

SSRAM

BCF

32

gatherer
B

rx
decoder boc2rod 12b @

80 MHz
S-

Link0
16b @ 80 MHz

+ 7 ctrl

rx
decoder boc2rod gatherer

C
simple
EFB-1

histo
1

12b @
80 MHz

gatherer
D rx

decoder
boc2rod

12b @
80 MHz

S-
Link1

16b @ 80 MHz
+ 7 ctrl

SSRAM

DMA

axi histo dma

axi epc

axi epc axi epc

axi epc

axi epc

axi epc

axi epc

register
block

32 32 16

32

32 32 16

A very quick look to the firmware

A lot of embedded processors

•  The PPC on the Virtex5 is good for
implementing repetitive scan loops (=
much easier to code in SW than in
VHDL)

•  Each of the 2 Spartan6 implements a
Microblaze core, mainly for dealing
with the TCP/IP histograms transfer to
the external farm (a custom VHDL core
is much more difficult to implement)

A nice thing of embedded processors is that their behavior can be
simulated together with the remaining VHDL blocks in order to find
bugs. It was not the same when using TI DSPs and FPGAs …

IBL ROD Summary

•  A new HW board is in place

•  A lot of new firmware features can be implemented and tested

• A lot of SW also has to be developed

Backup slides

TIM module

IBL BOC-ROD

