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•  Case study 1: ALICE SDD readout board 

•  Case study 2: ATLAS IBL readout board 



Case study (1):  
readout board for ALICE SDD 



8 6 SDDs per ladder 

22 14 Ladders 
23.8 14.9  Radius (cm) 

Layer 4 Layer 3 

SDDs equip 2 out of 6 cylindrical layers of the ALICE ITS  



SDD readout architecture (each half-ladder) 

PASCAL 
AMBRA 
CARLOS (data compression) 
GOL (Gigabit Optical Link) + QPLL 

40 MHz clock 
Programming & monitoring"
Data output & monitoring 



SDD front-end and readout 
electronics 

Design specifications 
 dynamic range: up to 8 MIPs 
 noise: 250 e- 

 readout time  < 1ms 
 power consumption:                  

<5 mW/channel 
 chips thinned to 150µm 

PASCAL (64 channels) 
 Preamplifier (τ ~ 40ns, RC-CR2 shaping) 
 Analog memory (64 ×256 cells) 
 32 10-bit linear ADC (1 every 2 channels) 
) AMBRA (64 channels) 
 Four 16 kB buffers 
 Baseline equalization 
 10 to 8-bit compression 
CARLOS (1 for 8 AMBRAs) 
 Zero suppression and Compression of data 

from 1 SDD with a 2D – 2-Threshold 
algorithm (programmable parameters) 

 Interface with AMBRAs, GOL and 
CARLOS-rx (FPGA based board, in counting 
room, which links to DDLs) 

 FEE monitoring (SEU) time-multiplexed 
with data on the 16-bit output data bus 

 Protections against radiation effects (parity 
check) 
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Trieste 100 m. 

SDD readout chain 



CARLOSrx readout board (2005) 

DDL 

TTCrq 

busy 

6 SDD  
modules 

Input bandwidth: 12 x 800 Mbit/s 
Output bandwidth: 2 Gbit/s 

On-line data decoding, formatting and re-encoding with a different format 

6 SDD  
modules 



dataflow 

SIU 

TTCrq 

data 



CARLOSrx firmware 



Production: 2005-2006 

•  HW design: Davide Falchieri 
•  Installed in CR4 in 2007 
•  3 Xilinx VirtexII-PRO 
FPGAs 

Production: 2011 

•  HW design: Luca Toscano, 
Francesco Rotondo  
•  Installed in CR4 in 2013 
•  5 Xilinx Virtex5 FPGAs  

From CARLOSrx to SuperCARLOSrx 



Why SuperCARLOSrx ? 
Several reasons: 
•  Virtex-II PRO devices no longer supported by ISE after release 10 
(Xilinx defines this family as a mature and discontinued product); 
•  Resources usage on the 3 Virtex-II PRO was around 60%: not much 
space for adding new firmware features 
•  A new algorithm (common mode subtraction) had to be inserted in the 
data path and simply CARLOSrx had no enough resources for the job 

CARLOS CARLOSrx 
zero suppressed 

data 

CARLOS SuperCARLOSrx 
raw data 

common mode filter + data compression 



From Virtex-II PRO to Virtex5 

Device Array Slices DSP48E Block 
RAM  
(Kb) 

PowerPC RocketIO I/O 
banks 

User 
I/O 

FX30T 80x38 5120 64 2448 1 8 12 360 

FX70T 160x38 11200 128 5328 1 16 19 640 

FX100T 160x56 16000 256 8208 2 16 20 680 

FX130T 200x56 20480 320 10728 2 20 24 840 

FX200T 240x68 30720 384 16416 2 24 27 960 

Virtex-5 FPGA slices are organized differently from previous generations. Each 
Virtex-5 FPGA slice contains four LUTs and four flip-flops (previously it was two 

LUTs and two flip-flops) 



From CARLOSrx to SuperCARLOSrx (2011) 

5 Xilinx FPGAs: Virtex5 FX70T 
Serial connections running @ 2.5 Gb/s 



superCARLOSrx dataflow 

SIU 

TTCrq 

data 



SuperCARLOSrx clock distribution 

LHC 40 MHz 
clock from 

TTCrq 



SuperCARLOSrx FPGA configuration 
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Block diagram for a single module 
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brand new blocks 



scheduler 
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Virtex5 
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Why a common mode noise filter ? 



Common mode noise 

Border channels •  The common mode noise is a 
coherent fluctuation of a group of 
electronic channels induced by 
external sources 
• Vertical bands on Raw Data Plot 

•  Border channel effect due to 
microcables proximity 

Hybrid 

Vertical bands 
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channel 

Evaluated on-line 
event-by-event 

common mode and pedestal subtraction 
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Single Hybrid Test results 

Mean = 2.88  
RMS = 0.45 
Mean = 2.88 Mean = 2.24 
RMS = 0.45  RMS = 0.25 

 Minimize border channel effects 



Common mode reduction algorithm tuning 

•  Software validation is in progress in Torino (Luciano Ramello) 
•  Hardware coding of the algorithm started 



SuperCARLOSrx Summary 

•  A new HW board is in place 

•  A lot of new firmware features can be implemented and tested 



Case study (2):  
readout board for ATLAS IBL 



Atlas Pixel Detector Overview 



Atlas Pixel Detector Overview 

Innermost detector: tracking and vertexing  
3 barrel layers - b-layer closer the beam pipe (<r>=5cm) 
80M pixels in total (50 um x 400 um) 

front-end chip : FE-I3  (2880 channels x chip) 
basic unit: module (sensitive region coupled with 16 FE-I3) 
1774 modules in total 

one Module Control Chip (MCC) x module different readout schemes:  
b-layer: 2 link @ 80 Mb/s  (160 Mb/s) 
layer 1: 1 link @ 80 Mb/s 
layer 2: 1 link @ 40 Mb/s 

Each off-detector readout unit handles up to 160 MB/s  
(8 links @ full speed = 1 S-Link) 



on-detector 
front-end chips 

optical 
 link 

BOC ROD 

VME crate 

DAQ 

timing and 
trigger 

Readout electronics for the Pixel Detector 



8 
on-detector 

front-end chips 

1 
S-Link 

Old BOC-ROD pair 



Old BOC 

S-Link 

The BOC card serves as 
the optical interface for 
the off detector part and 
provides the complete 

timing functionality for 
the ATLAS pixel detector 

and its readout 



8 FORMATTER 

1 EFB 

1 ROUTER 

1 RCF 

Old ROD 

11 FPGAs + 5 DSPs 



Pixel Detector Upgrade: Inner Barrel Layer (IBL) 

Major Goals: 
•   strengthen the tracking capability by increasing both redundancy and precision; 
•   preserve the performances of the Pixel Detector for effects due to the increased 

luminosity expected after LHC upgrades (greater pile-up and radiation doses).   

12 millions pixels 
Pixel size : 50 x 250 um   
 <R> = 33 mm                          
|Z| < 33.2 cm     
14 Staves                         
224 Modules 



New front-end electronics for IBL  
A new front-end ASIC, called FeI4, has been designed to face the larger 

occupancy as well as to manage the increased bandwidth expected for IBL.   

pixel array: 336x80 pixels 
Each FeI4 pixel contains an independent, free 
running amplification stage with adjustable 
shaping, followed by a discriminator with 

independently adjustable threshold. The chip 
keeps track of the firing time of each discriminator 
as well as the time over threshold (ToT) with 4-bit 

resolution, in counts of an externally supplied 
clock, nominally 40 MHz. Information from all 

discriminator firings is kept in 
the chip for a latency interval, programmable up 
to 255 cycles of the external clock. Within this 

latency interval, the information can be retrieved 
by supplying a trigger. The data output is serial 
over a current-balanced pair (similar to LVDS). 

The primary output mode is 8b/10b encoded with 
160 Mb/s rate. The FE-I4 is controlled by a serial 
LVDS input synchronized by the external clock. 



When specifying the design of the DAQ chain for the IBL, the first open 
question was whether the existing ROD was sufficient or if a new one 
was needed. The existing ROD firmware could be modified to operate 
with the IBL module data format; however, the hardware of the board is 
designed to operate with a maximum of eight 160 Mb/s input links (from 
the modules) to one output S-Link, while, in order to respect the IBL 
natural modularity, thirty-two 160 Mb/s links to four S-Links have to be 
handled. This consideration, together with the 4 MB/s bandwidth 
limitation on the VME bus and the obsolescence of the components led to 
the decision to design a new BOC-ROD pair. 

Proposal of a new off-detector readout 



8 FORMATTER 

1 EFB 

1 ROUTER 

Transition to the new ROD 

DSP 

RCF 

2 FPGA 

1 FPGA 



New IBL ROD 

1 FPGA 
with PowerPC  
inside: Virtex5 

2 FPGAs: 
Spartan6 

Fewer devices implementing the functionality of 4 old RODs 
14-layer PCB 





S6A V5 S6B 

Configuration 
The FPGAs can be 
configured in 2 ways: 
•  via JTAG from the 
front panel, 
•  directly via VME by 
a VME CPU (we use 
STAPL files with 
JAM player) 



Clock distribution 

TIM  BOC  ROD (40 MHz clock) 



Power supply distribution 



32 
on-detector 

front-end chips 

4 
S-Links 

New BOC-ROD pair 

BOC: optical interface ROD: data processing 

Total I/O bandwidth: 5.12 Gb/s 
Faster calibration link by using Gb Ethernet instead of the VME bus for data transfer 



IBL ReadOut system summary 
Number  of IBL Staves /ROD-BOC pair 14 

# DAQ Modules per ROD-BOC pair 16 

# FE-I4s chip per ROD-BOC pair 32 

Total # of FE-I4s  in IBL 448 (32*14) 

Number of Pixels per FE-I4 26880 

Total # of read-out channels ~12 M 







IBL Back Of Crate card 

Sampling @ 640 MHz with ISERDES, 
GTPs to support 4-Slinks @ 2 Gb/s 
Individual output delay on serial lines to FeI4: 255 * 28ps steps 



Data flow during physics runs 

data from 
front end 

DAQ 

DAQ 

data from 
front end 

triggers 
from TIM 

triggers to 
front end 



Data flow during calibration runs 

data from 
front end 

data from 
front end 

triggers to 
front end 

The calibration is controlled by the PPC which drives the calibration 
scan configuring the FeI4s and sending triggers 



As for the Pixel Detector, the calibration of the IBL detector is performed by repeating 
relatively short (~100) series of events, recorded while injecting a known charge into each 
pixel and with different settings of the front-end parameters (e.g. different thresholds or 
different pre-amplifier feedback currents). This sequence, called calibration scan, generates a 
very large number of events, which have to be analyzed in order to extract the histogram 
showing how many times each pixel has been fired for a given setting. For this reason, in 
calibration mode, the data stream coming from the sensor is not sent over the S-Link, but pre-
processed in the ROD, where the relevant histograms are produced. At the end of the scan, the 
histograms are transferred to an external farm via Gb Ethernet for fitting and archiving.  
IBL ROD executes only the calibration loops to accumulate the per-pixel occupancies, sums 
of time-over-threshold (ToT) and sums of ToT2 parameters. Then histograms are created and 
saved on-the-fly on RAMs and eventually transferred via Gb Ethernet to an off-line high-
performance computer.  

Calibration runs 

row/col 
to addr 

control 

dual-port 
RAM 

data from  
8 FE-I4s 
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+ToT2  x2 

ToT 

addr 

read 

write 

Σ	


Σ ΤοΤ	


Σ ΤοΤ2	




A threshold scan determines the threshold µ and noise of a pixel. This is achieved 
by injecting a defined charge Q multiple times into the pixel and counting the 
resulting hits. One then iterates over several charge steps (typically 100) by 
changing the voltage Vcal and creates a histogram 
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A very quick look to the firmware 



A lot of embedded processors 

•  The PPC on the Virtex5 is good for 
implementing repetitive scan loops (= 
much easier to code in SW than in 
VHDL) 

•  Each of the 2 Spartan6 implements a 
Microblaze core, mainly for dealing 
with the TCP/IP histograms transfer to 
the external farm (a custom VHDL core 
is much more difficult to implement) 

A nice thing of embedded processors is that their behavior can be 
simulated together with the remaining VHDL blocks in order to find 
bugs. It was not the same when using TI DSPs and FPGAs … 



IBL ROD Summary 

•  A new HW board is in place 

•  A lot of new firmware features can be implemented and tested 

• A lot of SW also has to be developed 



Backup slides 



TIM module 





IBL BOC-ROD 


