

High-speed CMOS integrated circuit design

Filip Tavernier CERN

- Basic concepts
- Data properties
- Circuit noise
- Bandwidth
- BER
- Jitter
- FEC
- Circuit concepts
- Common-source amplifier
- Optimum current density
- Bandwidth extension
- Multistage amplifier
- Negative impedances

High-speed (optical) data

 communication

Random digital data

$$
\begin{gathered}
w(t)=\sum_{i} b_{i} p\left(t-i T_{b}\right) \\
\downarrow
\end{gathered}
$$

$$
S_{w}(f)=\frac{|P(f)|^{2}}{4 T_{b}}\left(1+\frac{\delta(f)}{T_{b}}\right)
$$

$$
p(t)= \begin{cases}A & \text { if } 0 \leq t \leq T_{b} \\ 0 & \text { otherwise }\end{cases}
$$

$$
P(f)=A T_{b} \frac{\sin \pi f T_{b}}{\pi f T_{b}} e^{-j \pi T_{b}}
$$

$$
S_{w}(f)=\frac{A^{2} T_{b}}{4}\left(\frac{\sin \pi T_{b}}{\pi f T_{b}}\right)^{2}\left(1+\frac{\delta(f)}{T_{b}}\right)
$$

no information at the data rate frequency! (for NRZ data)

$$
\rightarrow \text { impuls at DC (DC offset) }
$$

Pseudo-random digital data

- same pattern is repeated; pattern length $=2^{n}-1$ ($n=\#$ memory elements)
- PRBS used frequently to test high-speed data links (n typically between 7 and 31)
- continuous spectrum of truly random data becomes line spectrum because of the repetition of the same pattern every $2^{n}-1$ bits
- distance between spectral lines inversely proportional to pattern length

Circuit noise (1)

- when working with noise, always use the spectral noise densities

$$
\left\{\begin{array}{l}
\overline{d V_{n, R}^{2}}=4 k T R \cdot d f+V_{R}^{2} \frac{K_{R} R_{s q}}{A_{R}} \cdot \frac{d f}{f} \text { for resistors } \\
\overline{d V_{n, T}^{2}}=4 k T R_{e f f} \cdot d f+\frac{K_{T}}{W L C_{o x}^{2}} \cdot \frac{d f}{f} \text { for MOS transistors } \\
\overline{d I_{n, D}^{2}}=2 q I_{D} \cdot d f+I_{D} \frac{K_{D}}{A_{D}} \cdot \frac{d f}{f} \text { for diodes }
\end{array}\right.
$$

- every noise source in a circuit has its own transfer function towards the output
- output noise spectral density depends on the input impedance!

$$
\begin{aligned}
& \overline{d V_{n, \text { out }, o}^{2}}=\overline{d V_{n, 1}^{2}} \cdot\left|T F_{1, o}\right|^{2}+\overline{d I_{n, 2}^{2}} \cdot\left|T F_{2, o}\right|^{2}+\ldots \\
& \overline{d V_{n, \text { out }, s}^{2}}=\overline{d V_{n, 1}^{2}} \cdot\left|T F_{1, s}\right|^{2}+\overline{d I_{n, 2}^{2}} \cdot\left|T F_{2, s}\right|^{2}+\ldots
\end{aligned}
$$

- equivalent input noise is a purely mathematical quantity (can go infinitely high if the gain of the circuit goes to zero!)
- both a voltage and a current noise source are required to characterize the circuit noise
- for an open input $\left(Z_{s}=\infty\right)$, the output noise is only determined by the current source
- for a shorted input $\left(Z_{s}=0\right)$, the output noise in only determined by the voltage source
- for a finite Z_{s}, the output noise is determined by both the voltage and the current source

Circuit noise and BER

- without noise, there is no chance of making a wrong decision provided that the decision threshold is between the low and high signal values
- with noise, there is a chance of making an error which depends on the choice of the decision threshold

$$
P_{e}=\frac{1}{2} P_{e, Z E R O}+\frac{1}{2} P_{e, O N E}
$$

$$
=\frac{1}{2} \int_{V_{t}}^{\infty} p(V \mid Z E R O) d V+\frac{1}{2} \int_{-\infty}^{V_{t}} p(V \mid O N E) d V
$$

$$
=\frac{1}{2} \int_{V_{t}}^{\infty} \frac{1}{2 \pi V_{n, R M S}} e^{\frac{-\left(V-V_{t}\right)^{2}}{2 V_{n, R M S}^{2}}} d V+\frac{1}{2} \int_{-\infty}^{V_{t}} \frac{1}{2 \pi V_{n, R M S}} e^{\frac{-\left(V-V_{t}\right)^{2}}{2 V_{n, \text { RMS }}}} d V
$$

$$
=Q\left(\frac{V_{p t p}}{2 V_{n, R M S}}\right) \xrightarrow[\begin{array}{c}
V_{p t p}>14 \mathrm{~V}_{\mathrm{n}, \mathrm{RMS}} \text { for } \mathrm{BER}<10^{-12} \\
\text { SNR }>17 \mathrm{~dB}
\end{array}]{\substack{ \\
\text { SN }}}
$$

Bandwidth

high-pass filtering

- originates from AC-coupling, offset compensation, ...
- leads to DC wander with a long succession of identical bits
- scrambling data to reduce the low frequency content

low-pass filtering

- originates from limited performance of circuits at high frequencies
- leads to incomplete settling of the signal within the bit interval = ISI
- leads to jitter

Bandwidth, circuit noise and BER

finite receiver BW \rightarrow signal not settled at the decision point \rightarrow lower effective SNR

$$
\begin{gathered}
V_{p t p, d}=V_{p t p} \cdot\left(1-2 e^{\frac{-T_{d}}{\tau_{l p}}}\right) \\
P_{e}=Q\left(\frac{V_{p t p, d}}{2 V_{n, R M S}}\right)
\end{gathered}
$$

Example:

bit rate $=1 \mathrm{Gbit} / \mathrm{s}\left(\mathrm{T}_{\mathrm{b}}=1 \mathrm{~ns}\right)$ and $\mathrm{f}_{\mathrm{lp}}=500 \mathrm{MHz}\left(\tau_{\mathrm{lp}}=318 \mathrm{ps}\right)$
$\rightarrow \mathrm{V}_{\text {ptp,d }}=0.585 \mathrm{~V}_{\mathrm{ptp}}$ for a decision point in the middle of the bit interval
$\rightarrow B E R \approx 1 \mathrm{e}-5$ if $\mathrm{V}_{\mathrm{ptp}}=14 \mathrm{~V}_{\mathrm{n}, \mathrm{RMS}}$ (compared to $1 \mathrm{e}-12$!)

Question:

Is it a good idea to postpone the decision point towards the end of the bit interval to profit from the better settling?

Bandwidth-noise trade-off

GOAL: minimize BER of a receiver

Sweet spot: BW is around 70% of the bit rate (for example 700 MHz for $1 \mathrm{Gbit} / \mathrm{s}$ data)

voltage axis

- noise leads to a finite BER
- BW limitation leads to ISI time axis
- noise leads to random jitter
- BW limitation leads to deterministic jitter

BER is determined by the sampling time as well as the threshold voltage」

ideal decision point is probably in the exact center of the eye opening

Jitter and BER

optimum sampling time range is usually very limited for the minimal BER
tight control of sampling time is critical
\downarrow
difficult due to static clock phase errors, jitter in the recovered clock, ...
\downarrow
ideal CDR would 'track' the jitter of the input data to always sample in the center of the eye

Forward error correction

- for a BER of $1 \mathrm{e}-12$, an SNR of at least 17 dB is needed, assuming no bandwidth limitation
- Shannon's channel capacity theorem states that: error-free transmission over a channel with additive white Gaussian noise is possible if

- with 17 dB SNR, error-free operation at $5 \mathrm{Gbit} / \mathrm{s}$ for a 1 GHz bandwidth!
- how? \rightarrow forward error correction coding (FEC) FEC = add redundancy bits in the TX to correct for transmission errors examples: add parity bits, Reed-Solomon code, ...
- Basic concepts
- Data properties
- Circuit noise
- Bandwidth
- BER
- Jitter
- FEC
- Circuit concepts
- Common-source amplifier
- Optimum current density
- Bandwidth extension
- Multistage amplifier
- Negative impedances

Common-source amplifier

$$
\begin{aligned}
& A_{c s}=\frac{-g_{m, M_{1}} r_{d s, M_{1}}\left(1-\frac{s \cdot C_{g d, M_{1}}}{g_{m, M_{1}}}\right)}{1+s \cdot r_{d s, M_{1}} C_{l}} \longleftrightarrow G B W=\frac{g_{m, M_{1}}}{2 \pi \cdot C_{l}} \\
& \text { trade-off through } \mathrm{r}_{\mathrm{ds}, \mathrm{M}_{1}} \\
& \text { - negative pole, reduces } \\
& \text { phase with } 90^{\circ} \\
& \text { - positive zero, increases } \\
& \text { phase with } 90^{\circ} \\
& \text { - zero at very high } \\
& \text { frequency! } \\
& \text { - Miller effect on } \mathrm{C}_{\mathrm{gd}, \mathrm{M}_{2}} \\
& \text { - frequency dependent } C_{1}
\end{aligned}
$$

Frequency response of CS amplifier

bandwidth depends strongly on parasitics!
\rightarrow RF transistor model covers some of the layout parasitics
\rightarrow extracted schematics include even more of them

Transistor biasing for gain

NMOS W/L $=480 \mathrm{~nm} / 120 \mathrm{~nm}$

$r_{d s} \approx \frac{1}{\lambda I_{d s}}$

high gain?
\rightarrow low current density
$=$ small $\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{th}}$ (weak inversion)
\rightarrow long transistor $\lambda \propto \frac{1}{L}$

Transistor biasing for bandwidth

$$
C_{l}=C_{d b, M_{1}}+C_{g d, M_{1}}+\left(1+A_{c s}\right) \cdot C_{g d, M_{2}} \quad \rightarrow \text { decreases slightly with current density }
$$

	high gain	high speed
$\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{th}}$	low	high
L	large	small

high bandwidth?
\rightarrow high current density
\rightarrow large $\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{th}}$ (strong inversion)
\rightarrow short transistor

$$
\lambda \propto \frac{1}{L}
$$

Biasing for maximum g_{m} ?

- high-speed circuits? \rightarrow maximize g_{m}
- maximum g_{m} is obtained for a large current density and large overdrive voltage
- no signal headroom for the maximum $g_{m}\left(V_{d d}=1.5 \mathrm{~V}\right)$
- in practice: $0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{gs}}<1 \mathrm{~V} \rightarrow 70-80 \%$ of maximum g_{m}

Biasing for maximum bandwidth?

NMOS W/L $=480$ nm/120 nm

NMOS W/L $=480$ nm/120 nm

- maximum bandwidth is obtained for a large current density and large overdrive voltage
- no signal headroom for the maximum bandwidth ($\mathrm{V}_{\mathrm{dd}}=1.5 \mathrm{~V}$)
- in practice: $0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{gs}}<1 \mathrm{~V} \rightarrow 25-75 \%$ of maximum bandwidth

Invariance of optimum current density (1)

(T. O. Dickson et al. - JSSC vol. 41, no. 8, p. 1830, August 2006)

- intrinsic speed of transistor $\rightarrow \mathrm{f}_{\mathrm{t}}$

$$
f_{t}=\frac{g_{m}}{2 \pi \cdot C_{g s}}
$$

- maximum f_{t} can be found at a current density of $J= \pm 0.3 \mathrm{~mA} / \mu \mathrm{m}$

$$
J=\frac{I_{d s}}{W}[\mathrm{~mA} / \mu \mathrm{m}]
$$

- relatively broad optimum
- independent on foundry
- independent on technology node (due to constant field scaling)
- independent on transistor length
- valid for nMOS and pMOS transistors (for pMOS, the optimum is $0.15 \mathrm{~mA} / \mu \mathrm{m}$)

Invariance of optimum current density (2)

optimum current density

- independent on transistor length
- identical for bulk or SOI processes

Invariance of optimum current density (3)

optimum current density

- independent on temperature
- Independent on threshold voltage

Invariance of optimum current density (4)

a comparable optimum can be found when considering noise ($J= \pm 0.15 \mathrm{~mA} / \mu \mathrm{m}$) \rightarrow wider transistors and smaller $\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{th}}$ if noise is more important than bandwidth

CML stage and optimum current density

delay changes less than 10% for a current density in the range $0.15 \mathrm{~mA} / \mu \mathrm{m}-0.5 \mathrm{~mA} / \mu \mathrm{m}$

$\tau=\frac{\Delta V}{I_{T}}\left[C_{g d}+C_{d b}+\left(k+\frac{R_{g}}{R_{L}}\right)\left[C_{g s}+\left(1+g_{m} R_{L}\right) C_{g d}\right]\right]$
\rightarrow time constant at the output of the CML stage when fully switching the tail current

Common-source amplifier with resistive load

$$
\begin{gathered}
\left|A_{D C}\right|=g_{m, M_{1}}\left(r_{d s, M_{1}} / / R_{l d}\right) \longrightarrow G B W=\frac{g_{m, M_{1}}}{2 \pi \cdot C_{l}} \\
f_{p}=\frac{1}{2 \pi \cdot\left(r_{d s, M_{1}} / / R_{l d}\right) \cdot C_{l}} \quad \begin{array}{c}
\text { same as for simple } \\
\text { CS amplifier? }
\end{array}
\end{gathered}
$$

NMOS, $L=120 \mathrm{~nm}, \mathrm{NF}=4, \mathrm{~W}=4 \mu \mathrm{~m} \mathrm{~J}=0.17 \mathrm{~mA} / \mu \mathrm{m}$

$$
C_{l}=C_{d b, M_{1}}+C_{g d, M_{1}}+C_{g s, M_{2}}+\left(1+A_{c s}\right) \cdot C_{g d, M_{2}}
$$

No! lower DC gain
\rightarrow less pronounced Miller effect
\rightarrow smaller C_{1}
\rightarrow bandwidth increases faster then that the gain is reduced

Common-source amplifier with common-drain stage

$$
\left|A_{D C}\right|=g_{m, M_{1}}\left(r_{d s, M_{1}} / / R_{l d}\right) \cdot \frac{g_{m, M_{3}}}{g_{m, M_{3}}+g_{d s, M_{3}}}
$$

$\approx g_{m, M_{1}}\left(r_{d s, M_{1}} / / R_{l d}\right)$
$f_{p}=\frac{1}{2 \pi \cdot\left(r_{d s, M_{1}} / / R_{l d}\right) \cdot C_{l}}$

GBW does not depend on DC gain anymore

No! no parasitics from M_{2}
$C_{l}=C_{d b, M_{1}}+C_{g d, M_{1}}+C_{g d, M_{3}}$
\rightarrow assume pole of CD stage is very large

Cherry-Hooper amplifier

principle: no high impedance nodes
\rightarrow alternate transconductance and transimpedance stages

$$
\begin{aligned}
\left|A_{D C}\right|=g_{m, M_{1}}\left(r_{d s, M_{1}} / / R_{f}\right) \quad f_{p 1} & =\frac{1}{2 \pi \cdot\left(r_{d s, M_{1}} / / \frac{R_{f}}{A_{c s}}\right) \cdot C_{l 1}} \\
& \approx \frac{A_{c s}}{2 \pi \cdot R_{f} C_{l 1}}
\end{aligned}
$$

2 low-impedance poles \rightarrow peaking?

Inductive peaking

problem: output capacitance reduces output impedance at higher frequencies
\rightarrow lower output voltage since output current sees lower impedance
\rightarrow pole at relatively low frequency
solution: add an inductor in series with the load resistor = shunt peaking
\rightarrow impedance of inductor increases with frequency
\rightarrow this increased inductor impedance can balance the reduced capacitance impedance
\rightarrow voltage gain can be maintained over wider frequency range
\rightarrow pole at a higher frequency

$$
L=m R^{2} C
$$

m	BW increase	response
0	1	no peaking
0.32	1.6	optimum group delay
0.41	1.72	maximally flat
0.71	1.85	maximum bandwidth

$1^{\text {st }}$ order system $\rightarrow 2^{\text {nd }}$ order system \rightarrow peaking

Active inductive peaking

problem: on-chip inductors require a lot of area
solution: emulate an inductor by means of a resistor, a capacitor and a transistor
\rightarrow at low frequencies, the g_{m} generates a low impedance
\rightarrow at very high frequencies, gate and source of the transistor are shorted through the gate-source capacitance
\rightarrow at very high frequencies, the impedance is high as it is only determined by R_{p} (and by the output resistance of the transistor)
\rightarrow at intermediate frequencies, the impedance is inductive!

\rightarrow modify pole locations by adding a capacitor in parallel with C_{gs}

Multistage amplifier (1)

sometimes, gain AND bandwidth are required \rightarrow multistage amplifier

$$
\begin{aligned}
& \left|A_{n, D C}\right|=\left|A_{1, D C}\right|^{n} \\
& B W_{n}=\sqrt{\sqrt[n]{2}-1} \cdot B W_{1} \\
& G B W_{n}=\left|A_{1, D C}\right|^{n-1} \cdot \sqrt{\sqrt[n]{2}-1} \cdot G B W_{1}
\end{aligned}
$$

- GBW increases faster for higher single-stage gains
- power consumption increased
 by the number of stages

Multistage amplifier (2)

What if we want to design a multistage amplifier with a certain gain and bandwidth? How many stages do we need?

$$
\frac{G B W_{1}}{G B W_{n}}=\frac{A_{n}^{\frac{1}{n}-1}}{\sqrt{\sqrt[n]{2}-1}} \quad \frac{P_{n}}{P_{1}}=n \frac{A_{n}^{\frac{1}{n}-1}}{\sqrt{\sqrt[n]{2}-1}}
$$

assuming $\mathrm{GBW}_{\mathrm{n}}$ can be realized in a single stage!

Negative impedances?

Can we increase gain and bandwidth simultaneously?

- negative resistance to increase the overall output resistance
\rightarrow gain is increased
\rightarrow bandwidth is reduced
- negative capacitance to decrease the overall output capacitance \rightarrow bandwidth is increased

$$
\begin{aligned}
& R_{\text {out }}=\frac{R_{\text {NIC }} R_{\text {out }, A}}{R_{\text {NIC }}-R_{\text {out }, A}} \\
& C_{\text {out }}=C_{\text {out }, A}-C_{\text {NIC }}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{\text {NIC,res }}=-\frac{2}{g_{m, M_{2}}} \\
& Z_{\text {NIC,cap }}=-\frac{1}{s \cdot C_{\text {NIC }}}\left(1+\frac{s \cdot 2 C_{N I C}}{g_{m, M_{3}}}\right)
\end{aligned}
$$

- Paulo Moreira

