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The GBT project 
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On-Detector 
Custom Electronics & Packaging 

Radiation Hard 

Off-Detector 
Commercial Off-The-Shelf (COTS) 

Custom Protocol 

Development of a high-speed bidirectional optical link for the LHC 
experiments upgrade program: 
• Versatile link project: opto-electronics 
• GBT project: ASIC design, especially for on-detector systems 



The GBT system 
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PLL principle 
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principle: equalize the phase of the generated clock to the phase of the input clock 
→ PFD measures the phase error and steers the charge pump to bring the phase of the 
     feedback clock towards that of the input clock 
→ in steady-state, the phase (and frequency) of the clocks at the input of the PFD are equal 
→ input divider enables the input clock frequency to be higher than that of the VCO clock 
→ feedback divider enables the input clock frequency to be lower than that of the VCO clock 
→ PLL is a feedback amplifier for phase (frequency), not for amplitude 
→ can become unstable! 
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PLL transfer function 
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→ VCO is an integrator for frequency 
assuming a 1st order loop filter 
→ 2nd order system 
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Design example: GBT ePLL 

• input divider: programmable divider ratio so that the output is always 40 MHz 
• feedback divider: fixed divider ratio of 4 because the VCO runs at 320 MHz 
• PFD: determines the frequency and phase difference between the input clocks 

and outputs UP and DOWN signals, of which the duration depends linearly on 
the phase difference between the input clocks 

• CP: charge pump with a 4-bit programmable output current to convert the UP 
and DOWN signals of the PFD to the current domain 

• LPF: 1st order loop filter referred to the supply voltage because of the pMOS 
current sources in the VCO 

• VCO: voltage-controlled ring-oscillator at 320 MHz with 16 output phases 
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Phase-frequency detector 
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• linear relationship between the duration of the early/late pulses and the 

phase error 
• PFD is sensitive to phase and frequency errors which leads to a PLL with a 

locking range that is basically limited by the VCO tuning range 
• delay of the NOR gate results in the early/late pulses go high every clock cycle 

→ ‘4’ possible output states of the PFD 
• ‘translation’ of signals taking into account the pMOS current source in the VCO 

- early → VCO is too fast → DOWN → source current into the loop filter 
- late → VCO is too slow → UP → sink current from the loop filter 



Charge pump (1) 
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no current flows to the loop filter or in the unity-gain amplifier 
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no current flows to the loop filter if sink and source currents are equal! 
 



Charge pump (2) 
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UP = high and DOWN = low 
sink current flows out of the loop filter, source current flows into the amplifier 
UP = low and DOWN = high 
source current flows into the loop filter, sink current flows out of the amplifier  
 



Charge pump non-idealities 
• unequal sink and source currents 

The loop filter is charged or discharged by the current 
difference when UP and DOWN are both high every clock 
cycle.  
→ static phase error 
→ solution: current sources with long length and 
     consequently high output impedance 

• parasitic capacitance at the drain of the current sources 
Charge sharing takes place every time one of the current 
sources is connected to the loop filter 
→ static phase error 
→ solution: unity-gain amplifier to equalize the drain   
     voltage of the current sources to the control voltage   
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Voltage-controlled oscillator 
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• 8-stage differential ring-oscillator 
• 8 D2S converters to generate the full-swing output phases (0°, 22.5°, 45°, 

67.5°, 90°, 112.5°, 135°, 157.5°) from the analog levels in between the delay 
stages 

• inverters used to generate the other 8 phases to save the power of another 8 
D2S converters 

• transmission gates to equalize the phases generated by the D2S converters 
directly and the ones generated by the inverters 



VCO – delay cell 
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• pMOS differential pair with pMOS current source → control voltage referred 
to the supply voltage 

• input transistors biased with small overdrive voltage because of the relatively 
large cell delay of 195.3125 ps 

• active load consisting of a current source and a diode to avoid the need for a 
common-mode feedback circuit and still have enough small-signal gain 

• gate voltage of the nMOS current sources derived by means of a replica 
biasing circuit 



Transfer function of the VCO 
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The target oscillation frequency of 320 MHz is obtained in every corner. 
The control voltage in lock is between 0.66 V and 0.92 V. 

control voltage 
referred to 

supply voltage! 



VCO gain at 320 MHz 
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The typical VCO gain is obtained in C0 (779 MHz/V), the minimal gain is 
seen in C10 (476 MHz/V) and the maximal in C9 (1106 MHz/V). 



Natural frequency and damping 
factor with typical VCO gain 
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• The target natural frequency (4 MHz) is achievable for the smaller  
   filter capacitances (10 pF → 60 pF) if the charge pump current is 
   arbitrarily limited at 100 µA. 
• The damping factor can be set to values within the range of interest 
   (ζ ≈ 1) for the proposed filter resistance range. 



Stability plot with typical VCO gain 
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PLL is not a continuous-time system, sampled with reference frequency 
→ stability problems may arise because of the sampled nature 
→ stability limit where on the poles of the loop exits the unit circle 
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Parameter choice 
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• 4 settable filter capacitances: C = 30 pF, 40pF, 50 pF 
or 70 pF 

• 8 settable filter resistances covering the desired 
damping factor range (0.7-1.4): 0.5 kΩ → 8 kΩ in 
steps of 0.5 kΩ 

• 15 settable charge pump currents with a range as 
discussed before: 8.5 µA, 16.4 µA, 24.2 µA, 31.8 µA, 
39.4 µA, 46.8 µA, 54.2 µA, 61.5 µA, 68.7 µA, 75.8 
µA, 82.8 µA, 89.7 µA, 96.3 µA, 102.7 µA, 108.8 µA 
 



Settable operating points with typical 
VCO gain (C = 50 pF) 
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• The target natural frequency (4 MHz) is obtained for a charge pump 
   current of  82.8 µA. 
• The optimal damping factor at this charge pump current is reached 
   for a filter resistance of 1.5 kΩ. 



Stability of the settable operating points 
with typical VCO gain (C = 50 pF) 
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If the filter capacitance is fixed at 50 pF, stability is guaranteed in 
almost all settable operating points; especially the larger filter 
resistances can results in stability problems. 



ePll core layout 
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Simulation in C0 (typical VCO gain) 
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time until lock after reset: 750 ns 
 



Measured output jitter 
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jitter values < 10 psRMS are possible 



Measured jitter transfer 
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jitter transfer = phase transfer! 
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GBT serializer block diagram 
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• input: 120-bit word every 25 ns 
• output: 4.8 Gbit/s serialized data 
• PLL running at 4.8 GHz with a 

reference clock at 40 MHz 
• 120-bit input register 
• 3 40-bit shift registers clocked 

with 1.6 GHz clocks 
• output multiplexer to combine 

the outputs of the 3 shift 
registers onto a single output 

• only output multiplexer and 
PLL operate at full speed 

• radiation-hard PLL 
• triplicated clock divider 
• data path is not radiation hard 

→ FEC 



Timing and layout 
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timing is critical for the correct operation! 
→ make sure the data is correctly loaded in 
     the shift registers before shifting out 
→ make sure the output multiplexer selects 
     a stable signal 

layout is a critical part of the design 
→ symmetry 
→ equal path lengths 
→ equal loading 



Output multiplexer 
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• fully differential structure  
→  constant current drawn from the supply 
→ no current spikes on the supply 

• only nMOS transistors in the signal path → fast 
• every internal node is pre-charged to ground 

→ parasitic capacitance at the output nodes is independent on the SR signals 
→ no pattern dependent jitter 

• 50 Ω resistors as pull-up network instead of pMOS counterpart 
→ intrinsic back termination 
→ shift registers only need to drive (small) nMOS transistors 



Measurement results 
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jitter decomposition: 
• random jitter 
• periodic jitter 
• deterministic jitter (duty-cycle distortion, DDJ, ISI) 

measurement at 4.8 Gbit/s with GBT frame 
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GBLD overview 
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GBLD: 5 Gbit/s laser driver to drive VCSELs as well as edge-emitting lasers 

• programmable modulation 
current (2-24 mA) 

• programmable emphasis 
current (±0-12 mA) 

• programmable laser bias 
current (2-43 mA) 



Laser bias and modulation 
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• chokes for the bias current 
• AC-coupling for modulation 

current 
• matching resistors to match 

the laser dynamic impedance 
to the transmission line 

• minimal current always above threshold 
• VCSEL: small bias and modulation current 
• edge-emitting laser: large bias and modulation current 
• large voltage drop over laser → laser bias circuit 

must be able to cope with this 



Pre-emphasis and de-emphasis 
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• pre-emphasis: reduce rise and fall time, compensate for unforeseen parasitic capacitances 
• de-emphasis: increase rise and fall time, basically never used here 
• emphasis duration generated by means of an on-chip delay line 



The modulator 

Filip Tavernier - CERN 36 

gain and bandwidth? 
→ multistage amplifier! 

input stage gain stage predriver AND gate 

output driver 



Input return loss for the GBLD 
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on-chip termination resistor 
is in parallel with a relatively large 
capacitance originating from the 
ESD devices and the input stage 

↓ 
the termination becomes a short 

at high frequencies 
↓ 

return loss does not fulfill the 
specification (> 16 dB) 

↓ 
place a T-coil to separate the 

capacitance from the resistance 
[S. Galal and B. Razavi, ‘Broadband ESD Protection Circuits 
in CMOS Technology’, IEEE Journal of Solid-State Circuits, 

vol. 38, no. 12, pp. 2334-2340, December 2003] 
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The concept of a T-coil 
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• At very low frequencies: Zin = RT because the inductors act as a 
short 

• At very high frequencies: Zin = RT because CB acts as a short 
• By properly choosing L1, L2, k and CB, Zin = RT can be guaranteed 

for all intermediate frequencies. 
• Cin (including the ESD capacitance) never influences the overall 

input impedance so that the return loss ideally is infinite. 
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T-coil input impedance 
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T-coil transfer function 
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Layout 

Filip Tavernier - CERN 41 

area = 550 µm x 300 µm 

SYMMETRY! 



Return loss improvement simulation 
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before after 

specification of 16 dB return loss cannot be met without a T-coil 



Return loss measurements 
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compared with a commercial 
device on the VTRx 

compared with GBLD v3 
on the testboard 
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