Introduction to Time-to-Digital Converters

E. Charbon and <u>S. Mandai</u> *TU Delft*

e.charbon@tudelft.nl

Outline

- TDC Basics
- Architectures
- Case Study
- ASIC vs. FPGA
- Conclusions

TDC Basics

TDC Objective

But, in most cases:

TDC Symbol

Basic Definitions

- Bin size or resolution τ (sec)
 - Minimum distance between time events that can be resolved
- Range (sec)
 - Maximum time difference that can be measured
- Conversion rate (MS/sec)
- Latency (sec)
- Non-linearities (LSB)
 - Differential non-linearity (DNL)
 - Integral non-linearity (INL)
- Single-shot accuracy (sec)

DNL / INL definition

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.

TDC Non-Idealities

DNL, INL

- Integral non-ideality (INL) is the integral of DNL
- Depending upon definition, starts and ends at 0

How to Measure: Density Test

- Poisson distributed uniform START generator
- Measure statistics of TDC measurements per bin
- Normalize to average counts, differences are DNL points

Input Non-Idealities

- Signals are non-Dirac
 - Non-zero rise time
 - Non-zero width
- START-STOP sequence is not regular
- Signals have jitter in
 - Time
 - Amplitude
- Temperature
- Supply variations

Single-Shot Accuracy (SSA)

- Repeat measurement of single time-of-arrival and construct histogram
- Derive statistics by Gaussian fitting and calculation of FWHM or σ or $3\sigma.$

Optical Tests

- Density test: free running SPAD
- Single-shot experiment:
 - Histogram Δt_i , *i*=[1...*N*]

(time-correlated single-photon counting – TCSPC)

Figures of Merit

- Power, resolution, DNL/INL, SSA, area
- Temperature stability
- Cross-talk

Architectures

The Simplest: A Counter

- Resolution: $\tau = 1/f_{clock}$
- Conversion rate = 1/latency

Counter – Register

- Advantage: fast counter can be shared among many HIT lines
- Fast registers easier to build

Delay Chain

Delay Chain

- Resolution: τ = delay element
- Conversion rate = 1/latency
- Latency = $N \times \tau$
- Need a thermometer decoder: $N \rightarrow \log_2(N)$
- <u>Issues</u>: metastability, bubbles

Phase Interpolator

- DLL, Passive component, Different threshold, Different offset for comparators
- Require area to achieve high resolution
- Can combine with other techniques easily

Vernier Lines

- Resolution: $\tau = \tau_{slow} \tau_{fast}$
- Conversion rate = 1/latency
- Latency = $N \times \tau_{slow}$
- Need a thermometer decoder: $N \rightarrow \log_2(N)$
- <u>Issues</u>: metastability, matching, **big area, slow conversion rate**

Pulse Shrinking

- Resolution: $\tau = \tau_{rise} \tau_{fall}$
- Conversion rate = 1/latency
- Latency = $N \times \tau_{slow}$
- Need a thermometer decoder: $N \rightarrow \log_2(N)$
- Issues: matching, slow conversion rate ۲

Ring Oscillators

- Resolution: τ = delay element
- Conversion rate = 1/latency
- Latency = $N \times \tau$
- Need a thermometer decoder: $N \rightarrow \log_2(N)$ \bullet
- Issues: metastability, matching, asymmetric load

Actual Implementation

- Fully differential
- Partial propagation readout
 - lower oscillation frequency or higher resolution
 - Rise times and fall times doubles resolution
- Invariant load to improve linearity

Delay Element Implementation

- Uniform rise/fall time
- Bias control used for feedback
- Positive feedback for speed

Asymmetric Rise/Fall Time

- E.g. inverter starved cell
- Rise time = V_{DD} C_{load}/I
- Fall time: inverter delay

Semi-Digital TDCs

 Determine time difference based on propagation through an RC line

Time Difference Amplifier (TDA)

- Time differences are multiplied as in successive approximation ADCs
- <u>Issues</u>: gain stability, jitter

Other Composite TDCs

- Counter + Phase Interpolator + Vernier Niclass *et al.*, JSSC08
- Ring Oscillators + Counters
 Veerappan *et al.*, ISSCC11
- Ring Oscillators + TDA
 Mandai and Charbon , ESSCIRC11

... and many more

Stabilization Techniques

 Process, Voltage supply, Temperature (PVT) variations eliminated using a delay locked-loop (DLL) in clock phase generation

PVT Stabilization in Phase Interpolators

- DLL running in parallel as a replica of delay chain
- Distribute bias to all delay chains

Nested Stabilization Loops

Metastability in Ring Oscillators

Case Study

An Array of 20,480 TDCs

- Massive array of pixels comprising
 - single-photon avalanche diode (SPAD)
 - TDC (ring oscillator type)
 - Memory
- Readout
 - Frame rate: 1us
 - Fully digital

TDC Implementation

Analog techniques allow greater architecture flexibility

Single-gate delay means less power, faster transitions

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama,

D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, ISSCC2011

The MEGAFRAME Pixel

The MEGAFRAME Chip

- Format: 160x128 pixels
- Timing resolution: 55ps
- Impulse resp. fun.: 140ps
- DCR (median): 50Hz
- R/O speed: 250kfps
- Size: 11.0 x 12.3 mm²

TDC Ring oscillator (3 bits) + counter (7 bits) = 10 bits 38

The Megaframe-128 Chip

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, *ISSCC2011*

Imager Block Diagram

Pixel Architecture

Photon Counting

Photon Time-of-Arrival

TDC Characterization

55ps resolution, 55ns range

System-level Timing

LSB Uniformity

Row

Optical Burst Detection

Using MEGAFRAME

- Optical rangefinder on-pixel (3D camera)
- Fluorescence lifetime imaging microscopy (FLIM)
- Fluorescence Correlation Spectroscopy (FCS)
- Detection of a scintillation shower upon gamma photon detection in PET

ASIC vs. FPGA

FPGA vs. discrete ASIC

- An application-specific integrated circuit (ASIC) is a chip with static circuitry optimized for one task
- A field-programmable gate array (FPGA) is a chip whose configuration, specified by a hardware description language, can be changed many times

General Comparison

FPGA

- Fast Development Time
- Reconfigurable
 - Lower fault risk
 - Iterate design
- Low non-recurring costs
 - Development
 - Testing

ASIC

- Lower power
- Faster operation
- Smaller footprint
- Better integration
- More flexibility
- Low unit costs
 - High-volume applications

How to Build a Delay Chain

FPGA Caveats: Clock Regions

Example FPGA Architecture

Only digital techniques available with existing cells

Virtex-6 FPGA TDC

Implementation #1 (design on Virtex-6)						
	Min	Тур	Max	Unit		
Clock frequency		200		MHz		
Standard uncertainty	7.38		14.24	ps		
Resolution		9.8		ps		
DNL	-1		6.2	LSB		
INL	-2.1		13.7	LSB		
Throughput		100		MSample/s		
Implementation $#2$ (improved timing)						
Clock frequency		600		MHz		
Standard uncertainty	7.38		14.24	ps		
Resolution		9.8		ps		
DNL	-1		1.5	LSB		
INL	-2.8		4.1	LSB		
Throughput		300		MSample/s		
Implementation #3 (improved position)						
Clock frequency		600		MHz		
Standard uncertainty	7.38		14.24	ps		
Resolution		9.8		ps		
DNL	-1		1.5	LSB		
INL	-2.25		1.61	LSB		
Throughput		300		MSample/s		

Temperature Dependence

Color	Temp.	Res.(ps)	$\mu(V)$	σ (mV)
	$10^{\circ}C$	9.8	1.0096	2.9
	$40^{\circ}C$	10.22	1.0034	1.9
	$60^{\circ}C$	10.48	0.9993	3.2

Location, Location, Location

Chip-to-chip Variation

TDC Comparison

FPGA

- Best time uncertainty: 20ps
- Usage examples
 - High-energy physics
 - OpenPET

ASIC

- Best time uncertainty: <1ps
- Examples
 - Time-correlated imaging
 - Frequency synthesizers for RF

FPGA- or ASIC-based TDC?

- Consider an FPGA-based TDC if your application:
 - Is low-volume
 - Doesn't require <20ps time uncertainty
 - Is sensitive to development time, or is being created in iterations
 - Is open source (FPGA-based TDCs are code-based)

State-of-the-art

Conclusions

- TDCs have experienced significant growth for many applications from microscopy to 3D vision, from ADPLLs to spectroscopy
- ASICs vs. FPGAs: problems and solutions are different
- Case study showed some trade-offs
- Perspectives show there is more to come

References

- C. Niclass et al., "A 128x128 Single-Photon Image Sensor with Columnlevel 10-bit Time-to-Digital Converter Array," *IEEE JSSC* Vol. 43, no 12, pp. 2977-2989, Dec. 2008.
- [2] M. Gersbach et al., "A Parallel 32x32 Time-to-Digital Converter Array Fabricated in a 130nm Imaging CMOS Technology," *IEEE ESSCIRC*, pp. 196-199, Sep. 2009.
- [3] D. Stoppa et al., "A 32x32-Pixel Array with In-Pixel Photon Counting and Arrival Time Measurement in the Analog Domain," *IEEE ESSCIRC*, pp. 204-207, Sep. 2009.
- [4] J. Richardson et al., "A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging," *IEEE CICC*, pp. 77-80, Sep. 2009.
- [5] C. Veerappan et al., "A 160 × 128 Single-Photon Image Sensor with On-Pixel 55ps 10b Time-to-Digital Converter," *IEEE ISSCC*, pp. 312-314, Feb. 2011.
- [6] R.B. Staszewski et al., "1.3 V 20 ps time-to-digital converter for Frequency Synthesis in 90-nm CMOS" *IEEE Trans. on Circuits and Systems-II*, vol. 53, no. 3, pp.220-224, Mar. 2006.
- [7] S. Henzler et al., "90nm 4.7ps-Resolution 0.7-LSB Single-Shot precision and 19pJ-per-Shot Local Passive Interpolation Time-to-Digital Converter with On-Chip Characterization", *IEEE ISSCC*, pp.548-635, Feb. 2008.
- [8] J.P. Jansson et al., "A CMOS Time-to-Digital Converter With Better Than 10 ps Single-Shot Precision," IEEE JSSC, vol. 41, no. 6, Jun. 2006.
- [9] J. Yu et al., "A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13um CMOS Technology," IEEE JSSC, vol. 45, no. 4, pp. 830-842, Apr. 2010.
- [10] L. Vercesi et al., "Two-Dimensions Vernier Time-to-Digital Converter," IEEE JSSC, vol. 45, no. 8, Aug. 2010

- [11] N. Xing et al., "A 14.6ps Resolution, 50ns Input-Range Cyclic Time-to-Digital converter Using Fractional Difference Conversion Method" *IEEE Trans. on Circuits and Systems-I*, vol. 57, no. 12, pp. 3064-3072, Dec. 2010.
- [12] P. Chen et al., "A CMOS Pulse-Shrinking Delay Element For Time Interval Measurement", *IEEE Trans. on Circuits and Systems-II*, Vol.47, No.9, Sep 2000, pp.954-958.
- [13] A. Mantyniemi et al., "A CMOS Time-to-Digital Converter Based On a Cyclic Time Domain Successive Approximation Interpolation Method" *IEEE JSSC*, Vol.44, No.11, Nov. 2009.
- [14] M. Lee and Asad A. Abidi, "A9b, 1.25ps Resolution Coarse-Fine Timeto-Digital Converter in 90nm CMOS that Amplifies a Time Residue" *IEEE JSSC*, Vol.43, No.4, Apr. 2008.
- [15] S. Mandai et al., "Time-to-Digital Converter Based on Time Difference Amplifier with Non-Linearity Calibration," *IEEE ESSCIRC*, pp. 266-269,Sep. 2010,
- [16] M.Z. Straayer et al., "A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping," *IEEE JSSC*, vol. 44, no. 4, pp. 1089-1098, Apr. 2009.
- [17] Y. Cao, et al., "A 1.7mW 11b 1-1-1 MASH ΔΣ Time-to-Digital Converter," *IEEE ISSCC*, 2011, pp.480-482.
- [18] S. Mandai and E. Charbon, "A 128-Channel 9ps Column-Parallel Two-Stage Time-to-Digital Converter Based on Time Difference Amplifier", *ESSCIRC*, 2011

Acknowledgements

- My current and former doctoral students, in particular M.W. Fishburn, S. Mandai, and C. Veerappan
- Jorgen Christiansen
- The MEGAFRAME, SPADnet, and EndoTOFPET-US consortia
- Y. Maruyama, C. Bruschini, H. Menninga

Perspectives

How To Compare and Choose

- Use in final system
 - Can one actually use effectively very high time resolution in large systems (detectors)
 - Calibration stability
 - Distribution of timing reference (start signal or reference clock)
 - Other features: data buffering, triggering, readout, test, radiation, etc.
- Merits

Merits (Jorgen Christiansen)

- Resolution
 - Bin size
 - Effective resolution (RMS, INL, DNL)
- Dynamic range
- Stability
 - Use of external reference
 - Drift (e.g. temperature)
 - Jitter
 - Noise
- Integration issues:
 - Digital/analog
 - Noise / power supply sensitivity
 - Sensitivity to matching of active elements
 - Required IC area
 - Common timing block/ per channel
 - Interference of noisy digital circuits