
An introduction to
FPGA architecture

Davide Falchieri

Data driven front-end electronics for highly segmented radiation detectors
Torino, 25-27 November 2013

Outline

• From CPLDs to FPGAs

• FPGA architecture

World of Integrated Circuits

Full-Custom
ASICs

Semi-Custom
ASICs

User
Programmable

PLD FPGA

• designs must be sent
for expensive and time
consuming fabrication
in semiconductor foundry

ASIC
Application Specific

Integrated Circuit

FPGA
Field Programmable

Gate Array

• designed all the way
from behavioral description
to physical layout

• small development
overhead
• no NRE (non-recurring
engineering) costs
• quick time to market
• no minimum quantity
order
• reprogrammable

How can we make a “programmable logic”?

• One time programmable
– Fuses (destroy internal links with current)
– Anti-fuses (grow internal links)
– PROM

• Reprogrammable
– EPROM
– EEPROM
– Flash
– SRAM (volatile)

A CPLD is a combination of a fully
programmable AND/OR array and a bank of

macrocells. The AND/OR array is
reprogrammable and can perform a multitude
of logic functions. Macrocells are functional

blocks that perform combinatorial or sequential
logic, along with varied feedback paths.

CPLD Architecture

Feedback Outputs

Complex PLDs

Xilinx CPLDs features

Benefits:
• reprogrammable devices
• low cost (~1-10 $)
• low power
• non volatile (FLASH based)

Top CPLDs applications
■ I/O expansion: performs I/O decoding, which increases the available I/O capability
of another standard device with efficiency and at a low cost.
■ interface bridging: translates bus protocols and voltages between incompatible
devices at the lowest possible cost.
■ power management: manages the power-up sequencing and monitoring of other
devices on the board.
■ configuration and initialization: controls the configuration or initialization of
other devices on the board.
■ analog control: controls analog standard devices (light, sound, or motion) digitally
via a pulse-width modulator (PWM), without needing a digital-to-analog converter
(DAC).

FPGA: Field Programmable Gate Array
Born in the 1980s from the CPLD the main manufacturers are:

Xilinx: SRAM based devices
Altera: SRAM based devices
Microsemi (ex Actel): Antifuse + FLASH devices
Lattice: SRAM based devices

Main focus will be given to Xilinx FPGAs

• First FPGA was released in 1985 by Xilinx with a mere 1,000 logic
gates primarily used for interconnections, buses and other peripherals.
By 2006 it had increased by over 10,000 times.

• FPGAs allow for highly parallel processing through inherent
hardware nature.

• Xilinx and Altera are the two leaders in FPGA and hold over 90% of
the market.

• Markets for intensive DSP applications include:
• wireless communications,
• video/image processing,
• aerospace/defense industry,
• high energy physics

Short history

Xilinx technology evolution

Family Technology Year Logic cells

XC3000 0.7-0.5 mm 1995 1k-5k
XC4000 0.5-0.35 mm 1999 1k-7k
Virtex 0.22 mm
Virtex-E 0.18 mm
Virtex-II 0.15 mm
Virtex-II PRO 0.13 mm 2004 3k-100k
Virtex4 0.09 mm 10k-200k
Virtex5 0.065 mm 2009
Virtex6 0.040 mm 2010 100k-500k
Virtex7 0.028 mm 2012 300k-2M

Field Programmable Gate Arrays:
FPGA

• Field Programmable Gate Array
• New Architecture
• ‘Simple’ Programmable Logic Blocks
• Massive Fabric of Programmable Interconnects
• Large Number of Logic Block ‘Islands’
1,000 … 100,000+
in a ‘Sea’ of Interconnects

FPGA architecture

Architecture of a FPGA

FPGA: it is a user-programmable matrix of logic blocks with
programmable interconnections that can implement any logic

function or algorithm.

Architecture of a FPGA
IOBIOBIOB

IOBIOBIOB

The Configurable Logic Block (CLB): 2 slices

Virtex5 slice Spartan6 slice

Virtex provide carry logic chain on all slices,
while Spartan just one out of two

CLBs connected in slice columns

Virtex5 slices Spartan6 slices

Inside a Virtex5 slice

basic LUT structure:
• LUT,
• carry logic,
• flip-flop

SliceM

Spartan6 features 3
types on slices:
• Slice M
• Slice L
• Slice X

full featured

SliceL

LUTs are not
configurable as
RAMs or SRLs

SliceX

LUTs are not
configurable as
RAMs or SRLs

and no carry logic

Spartan-6 FPGA Logic Resources

Using a LUT6 as a pair of LUT5

The function generators in Spartan-6 FPGAs are implemented as six-
input look-up tables (LUTs). There are six independent inputs (A1 to A6)
and two independent outputs (O5 and O6) for each of the four function
generators in a slice (A, B, C, and D). The function generators can
implement any arbitrarily defined six-input Boolean function. Each
function generator can also implement two arbitrarily defined five-input
Boolean functions, as long as these two functions share common inputs.

Using a LUT as a full adder

x y cin sum cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

00 10 10 01 10 01 01 11

0 1 2 3 4 5 6 7

address

To implement a full-
adder, we need a RAM

with 8 2-bits words

Distributed RAM
Distributed RAM is fast, localized and ideal for small data buffers, FIFOs or register files.
For larger memory requirements, consider using the 18Kb block RAM resources.

ROM
Each function generator can implement a 64 x 1-bit ROM. Three configurations are
available: ROM64x1 (one LUT), ROM128x1 (two LUTs) and ROM256x1 (4 LUTs).
ROM contents are loaded at each device configuration.

Shift register (SRL32)
A SLICEM function generator can also be configured as a 32-bit shift register without using
the flip-flops available in a slice. Used in this way, each LUT can delay serial data
anywhere from one to 32 clock cycles.

Multiplexers
Function generators and associated multiplexers in SLICEL or SLICEM can implement the
following:
• 4:1 multiplexers using one LUT
• 8:1 multiplexers using two LUTs
• 16:1 multiplexers using four LUTs

SLICEM

Using a LUT as a RAM

Single-Port
64 x 1-bit RAM

Dual-Port
64 x 1-bit RAM

LUT6

Using a LUT as a shift register

` ` ` ` ` `…
b0 b31

DI1

inserting a programmable latency on the input data using 1 LUT + 1 FF

four 4:1
multiplexers

in a slice

Using a LUT as a multiplexer

Fast Carry
Logic Path

FPGA Programmable
Interconnection Network

• Horizontal and vertical mesh of wire segments interconnected by
programmable switches called programmable interconnect points
(PIPs). These PIPs are implemented using a transmission gate
controlled by a memory bits from the configuration memory.

• Consists of global routing connecting CLBs to I/O buffers, non-adjacent
CLBs and other embedded components. Local routing connects CLBs to
other adjacent CLBs and CLBs to global routing (done through a switch
matrix)

SRAM

FPGA Programmable
Interconnection Network

The horizontal and vertical single- and double-length lines intersect at a box
called a programmable switch matrix (PSM). Each PSM consists of
programmable pass transistors used to establish connections between the lines

Not only logic on larger and newer devices

MULTIPLIER + ACCUMULATORDSP48E

Spartan6
XC6SLX45T

floorplan view in
PlanAhead

Global Networks

GSR: A separate Global Set/Reset line sets or clears each
flip-flop during power-up, reconfiguration or when a
dedicated Reset net is driven active. This global net does not
compete with other routing resources; it uses a dedicated
distribution network. GSR can be driven active from any
user-programmable pin as a global reset input.

GTS: A separate Global 3-state line (GTS) forces all FPGA
outputs to the high-impedance state. GTS does not compete
with other routing resources; it uses a dedicated distribution
network. GTS can be driven from any user-programmable pin
as a global 3-state input.

Clocks: see next slides

FPGA clock distribution
• Global clock network:

• providing low-skew clock routing to the FPGA logic resources
• each Spartan-6 FPGA device offers 16 high-speed, low-skew global
clock resources to optimize performance
• Global clock input pads (GCLK)
• Global clock multiplexers (BUFG, BUFGMUX)
• Horizontal clock routing buffers (BUFH)

• Regional clock lines:
• providing high-performance low-skew clocking to the IO logic
resources
• each Spartan-6 FPGA provides 40 ultra high-speed, low-skew I/O
regional clock resources (32 BUFIO2s and eight BUFPLLs) to serve
localized I/O serializer/de-serializer (ISERDES and OSERDES)
circuits.
• I/O clock buffers (BUFIO2, BUFIO2_2CLK, BUFPLL)

FPGA clock distribution

FPGA clocking resources

FPGA clocking resources
• DCM
– Ease of design porting
– Superior phase shift capability

• PLL
– Higher operating frequency
– Lower output jitter
– Faster LOCK times

The DCM requires less area in silicon, thus we have more
DCMs than PLLs. They are digital and greatly immune to
power supply noise (as compared to PLLs). They are a state
machine, so a "crummy clock" signal is NOT recommended,
as a DCM will have a hard time, where a PLL is commonly
used to "clean up" a "crummy clock" in order to make it
useful at all. DCM will add totally random, white, broad band
jitter, where a PLL will remove high frequency jitter, while
adding low frequency jitter (due to its oscillator having very
low Q on the silicon). It will also add as jitter any power
supply noise present varies the VCO in the PLL.

FPGA clocking resources: DCM

• Eliminate clock skew, either within the device or to external components, to improve overall system
performance and to eliminate clock distribution delays.
• Phase shift a clock signal, either by a fixed fraction of a clock period or by incremental amounts.
• Multiply or divide an incoming clock frequency or synthesize a completely new frequency by a mixture
of static or dynamic clock multiplication and division.
• Condition a clock, ensuring a clean output clock with a 50% duty cycle.
• Mirror, forward, or rebuffer a clock signal, often to deskew and convert the incoming clock signal to a
different I/O standard. For example, forwarding and converting an incoming LVTTL clock to LVDS.
• Free-running oscillator

Eliminating clock skew with a DCM

Two DCMs eliminate the clock skew: one DCM eliminates the skew for clocked items
within the FPGA, the other DCM eliminates the skew when clocking the other device on
the board. The result is practically ideal alignment between the clock at Points (A), (B),
and (C). The Spartan6 DCM employs a Delay-Locked Loop (DLL) that constantly
monitors the delay via a feedback loop. The DLL also constantly adapts to subtle
changes caused by temperature and voltage.

FPGA clocking resources: PLL

PLL

The main purpose of a PLLs is to serve as a frequency synthesizer for a wide
range of frequencies and to serve as a jitter filter for either external or internal

clocks in conjunction with the DCMs

The PLL can be used to reduce the output
jitter of one DCM clock output. The PLL is
configured to not introduce any phase shift

(zero delay through the PLL).

A second option for reduce clock jitter is to use
the PLL to clean-up the input clock jitter

before driving the DCM. This will improve the
output jitter of all DCM outputs, but

any added jitter by the DCM will still be passed
to the clock outputs.

FPGA banks + IOBs

Spartan6: 6 banks Virtex5: 19 banks

Each user I/O can be
configured as either

input, output or
bidirectional

Virtex5 pin planning example
• Many small banks: 19 (20 or 40 pins each)
• Relaxed constraint on SSOs (Simultaneous switching

Outputs)

SODIMM DDR2 DSP interface ETH

Ground or power bounce occurs when a large number of outputs
simultaneously switch in the same direction.

VCCINT
Internal core supply voltage. Supplies all internal logic functions, such as CLBs,
block RAM, and DSP blocks. Powers input signals for most standards at 1.0V,
1.2V, 1.5V and 1.8V.

VCCAUX
Auxiliary supply voltage. Supplies clock management tiles (CMTs), some I/O
resources, some dedicated configuration pins and JTAG interface. Powers input
signals for most standards at 2.5V and 3.3V.

VCCO
Supplies the output buffers in I/O bank.

VREF
Input threshold voltage pins when HSTL/SSTL standards are used in the bank,
otherwise user I/Os. When used as a reference voltage within a bank, all VREF
pins within that bank must be connected.

FPGA power supply

I/O electrical features: programmable control of output strength and slew rate and
on-chip termination

Digital Controlled Impedance (DCI): The 3-state Digitally Controlled Impedance
can control the output drive impedance (series termination) or can provide parallel
termination of an input signal to VCCO or split (Thevenin) termination to
VCCO/2. This allows users to eliminate off-chip termination. In addition to board
space savings, the termination automatically turns off when in output mode or
when 3-stated, saving considerable power compared to off-chip termination.

Input/Output Delay: any input and some outputs can be individually delayed by up to
32 increments of 78 ps or 52 ps each. Such delays are implemented as IDELAY
and ODELAY. The number of delay steps can be set by configuration and can also
be incremented or decremented while in use.

ISERDES / OSERDES: Many applications combine high-speed, bit-serial I/O with
slower parallel operation inside the device. This requires a serializer and
deserializer (SerDes) inside the I/O structure. Each I/O pin possesses an 8-bit
IOSERDES (ISERDES and OSERDES) capable of performing serial-to-parallel or
parallel-to-serial conversions with programmable widths of 2, 3, 4, 5, 6, 7, or 8
bits. By cascading two IOSERDES from two adjacent pins (default from
differential I/O), wider width conversions of 10 and 14 bits can also be supported.

IOBs

On chip termination

Pay attention to the static current increase with internal terminations!

Power estimation without using on chip termination

when using 40 on-chip
terminated inputs

when using 80 on-chip
terminated inputs … too
much!
Die temperature should be
lower than 85C for correct
behavior, but never over
125C !!!

Data Reception Using PLL and BUFPLL (ISERDES)

A 150 MHz input clock with
accompanying 7:1 data
requires the PLL and

BUFPLL to operate at 1050
MHz. This high-speed
capture clock is used to

clock the receive data into
the input deserializers and is

capable of driving one
whole edge of a device.

Parallel data is then
presented to the FPGA logic
at the speed of the original

incoming clock

Spartan-6 FPGAs perform in a wide variety of applications requiring various
serialization and deserialization factors up to 16-to-1, at speeds up to 1050 Mb/s,

depending on the application, speed grade, and package

Configuring an FPGA

• Millions of SRAM cells holding LUTs and Interconnect Routing
• SRAM is a volatile memory: it loses configuration when board power is

turned off
• Keep Bit Pattern describing the SRAM cells in non-volatile memory, e.g.

PROM or Digital Camera card
• Configuration takes ~ seconds after power-on

JTAG Port

Programming
Bit File

A lot of SRAM 
potentially dangerous in a radiation environment !

Spartan-6 devices include a feature to perform continuous readback of
configuration data in the background of a user design. This feature is
aimed at simplifying detection of single event upsets (SEUs) that cause a
configuration memory bit to flip. Detected failures appear either on a
device pin (INIT_B) and/or on an internally accessible component,
POST_CRC_INTERNAL. The clock source of the readback can be
external or internally generated.
The expected “golden” CRC value is calculated by the software and
written into the FPGA for later comparison. The subsequent scans of
Readback CRC value are compared against the golden value.

SEU detection

Measured mean time between SEUs
in XC2V6000 at sea level is

18 to 23 years
(with 95% confidence)

Configuration modes

master serial mode master selectMAP mode

slave serial mode
slave selectMAP mode

Spartan-6 FPGA Memory Controller Block

user
FPGA
CLBs

DDR
DDR2
DDR3

Spartan6 FPGA DSP48A1 slice

The DSP48A1 slices support many independent functions, including
multiplier, multiplier-accumulator (MACC), pre-adder/subtracter
followed by a multiply accumulator, multiplier followed by an adder,
wide bus multiplexers, magnitude comparator, or wide counter. The
architecture also supports connecting multiple DSP48A1 slices to form
wide math functions, DSP filters, and complex arithmetic without the
use of general FPGA logic.
One of the most important features is the ability to cascade a result from
one DSP48A1 slice to the next without the use of general fabric
routing.

Spartan6 FPGA DSP48A1 slice

DSP for implementing digital filters
The main components used to implement a digital filter algorithm
include adders, multipliers, storage and delay elements. The
DSP48A1 slice includes all of the above elements, making it ideal
to implement digital filter functions.

Virtex5 FPGA system monitor:
ADC inside!

This feature may be very useful for avoiding
damages to the FPGA! (not present in Spartan …)

Device Array Slices DSP48E Block
RAM
(Kb)

PowerPC RocketIO I/O
banks

User
I/O

FX30T 80x38 5120 64 2448 1 8 12 360

FX70T 160x38 11200 128 5328 1 16 19 640

FX100T 160x56 16000 256 8208 2 16 20 680

FX130T 200x56 20480 320 10728 2 20 24 840

FX200T 240x68 30720 384 16416 2 24 27 960

Xilinx Virtex5 FXT family

• 1 slice: 4 LUTs and 4 flip-flops
• 1 DSP48E: 1 25x18 multiplier, an adder and an accumulator
• RocketIO devices are designed to run from 150 Mb/s to 6.5 Gb/s

Cost may be an issue: FX70T price for instance is ~500 EUROs

Xilinx Virtex7 FXT family
(the newest and most expensive one)

~4k EUROs for one XC7VX485T …

Xilinx Spartan6 family
(cheap, but with some limitations)

~200 EUROs for one XC6SLX150

Hard Processor

• A processor built from
dedicated silicon is referred to
as a hard processor:
– Such is the case for the

ARM922T inside the Altera
Excalibur family

– The PowerPC 405 inside
the Xilinx Virtex-II Pro and
Virtex4-Virtex5 families

– Microsemi SmartFusion2
166 megahertz (MHz) ARM
® CortexTM-M3 processor

Xilinx Virtex II- PRO

Soft Cores

• A soft processor is built using the FPGA’s
general-purpose logic.

• Unlike the hard processor, a soft processor
must be synthesized and fit into the FPGA
fabric.

• Xilinx Picoblaze & MicroBlaze
• Altera Nios

PicoBlaze Embedded Microcontroller Diagram

Why use embedded processors?

Customization: take only the peripherals you need
and replicate them as many times as needed.
Create your own custom peripherals.

Strike optimum balance in system partitioning.

Serial signaling

• Avoids clock/data skew by using embedded clock.

• Reduces EMI and power consumption.

• Simplifies PCB routing.

Conclusions
Up to date, FPGAs are very suitable devices for implementing
digital signal processing. In fact:

• FPGAs feature enormous logic power with DSP optimized
blocks (for MAC operations);
• FPGAs can manage in real time data throughput of the
order of magnitude of GBit/s on several channels at the
same time;
• FPGAs are flexible, they can be reprogrammed anytime
• The design flow is straight-forward (if you know VHDL)
• IP cores are provided by manufacturers and can easily be
found over the Web.
• Price is an issue (large FPGAs are very expensive), but
you can choose the one who is tailored to your needs.

THANKS FOR YOUR ATTENTION !

References
• For FPGA:

• http://www.xilinx.com
• http://www.altera.com
• http://www.actel.com
• http://www.latticesemi.com
• http://www.atmel.com

• For DSP:
• http://www.ti.com
• http://www.analog.com

•“The scientist and Engineer’s Guide to Digital Signal
Processing” by Steven W. Smith, PhD
• “Understanding Digital Signal Processing” by Richard G.
Lyons

Backup slides

Power management: suspend mode

• Quickly and easily puts the FPGA into a static condition, eliminating most active
current.
• Reduces quiescent current by 40% or more.
• Retains FPGA configuration data and the state of the FPGA application during
suspend mode.
• Fast, programmable FPGA wake-up time from suspend mode.
• Individual control on each user-I/O pin to define pin behavior while in suspend
mode.
• Activated externally by the system using a single dedicated control pin (SUSPEND).
• Indicates the present suspend mode status using the AWAKE pin.
• Awakens an FPGA in suspend mode using any of eight SUSPEND control pins (SCP).
• SUSPEND_SYNC primitive to acknowledge a ready state prior to entering suspend
mode.

Why FPGAs for digital signal processing ?

Why FPGAs for DSP?

Conventional DSP Device
(Von Neumann architecture)

Data Out

Reg
Data In

MAC unit
....C0

Data Out

C1 C2 C255

FPGA

Reg0 Reg1 Reg2 Reg255
Data In

All 256 MAC operations in 1 clock cycle256 Loops needed to process samples

Reason 1: FPGAs handle high computational workloads

x[n]

0 1 2 3 4 5 6 7 8
-3
-2
-1
0
1
2
3

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

y[n]

3 2 1 0

h[n]
(flipped)

x x x x

+





3

0

]5[][]5[
j

jxjhy

Example: FIR
(Finite Impulse

Response)
digital filter

Each output sample is
found by multiplying
samples from the input
signal by the filter
kernel coefficients and
summing the products.

x[n]

0 1 2 3 4 5 6 7 8
-3
-2
-1
0
1
2
3

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

y[n]

3 2 1 0

h[n]
(flipped)

x x x x

+





3

0
]6[][]6[

j
jxjhy

x[n]

0 1 2 3 4 5 6 7 8
-3
-2
-1
0
1
2
3

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

y[n]

3 2 1 0

h[n]
(flipped)

x x x x

+





3

0
]7[][]7[

j
jxjhy

x[n]

0 1 2 3 4 5 6 7 8
-3
-2
-1
0
1
2
3

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

y[n]

3 2 1 0

h[n]
(flipped)

x x x x

+





3

0
]8[][]8[

j
jxjhy

From the Core generator library

FPGAs are ideal
for multi-channel DSP designs

ch1

ch2

ch3

ch4

When sample rates grow above a few MHz, a DSP has to work very hard to
transfer the data without any loss. This is because the processor must use
shared resources like memory buses, or even the processor core which
can be prevented from taking interrupts for some time.

A FPGA on the other hand dedicates logic for receiving the data, thus
maintaining high rates of I/O.

DSP

DSP

DSP
DSP

FIFO/RAM

ch out

FPGA

some Gbit/s
input

some Gbit/s
output

Why FPGAs for DSP?

Q = (A x B) + (C x D) + (E x F) + (G x H)

can be implemented in parallel

×
×

×
× +

+

+

+

+

+

A

B
C

D
E

F
G

H

Q

Reason 2: Tremendous Flexibility

But is this the only way in the FPGA?

×
×

×
× +

+

+

+

+

+ ×
+

+
D Q

×
×

+

+

+

+
D Q

Parallel Semi-Parallel Serial

Customize architectures
to suit your algorithms

FPGAs allow Area (cost) / Performance tradeoffs

Optimized for?Speed Cost

A/D

A/D

D/A

D/A

DSP DSP

SDRAM

FPGA DSP
Card

SDRAM

A/D

A/D

D/A

D/A

Control

Control

PL4

CORBA

MACs, DUCs,
DDCs, Logic

3.125 Gbps

Reason 3: Integration simplifies PCBs

Why FPGAs for DSP?

FFT Co-Processing Example
• FFT co-processor implemented within an Altera Stratix FPGA and

connected to a Texas Instruments DSP via the 32-bit external memory
interface (EMIF)

• Develop co-processor from intellectual property (IP), such as FFT
MegaCore

FFT implementation with only the TI
DSP processor

TI DSP running at 720 MHz completed
the 1024-point 16-bit FFT in 9.06 μs

FPGA Co-processor implementation

At 278 MHz completed the transform in
only 4.64 μs

The DSP is a specialized microprocessor, typically programmed in C (or
assembler for higher performance). It is well suited to extremely complex math-
intensive tasks with conditional processing. It is limited in performance by the
clock rate and the number of useful operations it can do per clock cycle. As an
example, a TMS320C6201 has two multipliers and a 200MHz clock, so it can
achieve 400M multiplies per second.

DSP versus FPGA

An FPGA is an uncommitted "sea of gates". The device is programmed by
connecting the gates together to form complex logic blocks, registers, adders and
so forth, plus the blocks available in hardware, such as RAMs and multipliers.
FPGA performance is limited by the number of gates available and the clock rate.
A FX70T Virtex5 device has 128 multipliers that can operate at more than
100MHz. This gives a total of 12800M multiplies per second.

Lower sampling rates and increased complexity suit the DSP approach;
higher sampling rates combined with repetitive tasks suit the FPGA.

Starter boards

(Relatively) Low cost
demo boards are ideal
for beginning to work
with FPGAs and for
finding the right
device

Starter boards on ebay

Demo boards can also
be used for building
simple detector
readout systems,
when connected to the
related front end
boards

Courtesy:
A. Montanari (INFN,
Bologna)

Digital design

• combinational logic

• sequential logic

combinational
circuit

Inputs Outputs

Clock

D Q

Q

State machines

Detect 3 or more consecutive 1’s

S0 / 0 S1 / 0

S3 / 1 S2 / 0

0

1

1

0 0

1

0

1

State A B
S0 0 0
S1 0 1
S2 1 0
S3 1 1

Pipelining

Large
combinational
logic delay

delay
Small
delay

Before:

After:

delay
Small
delay delay

Small
delay

Once the pipeline is full, a new result is produced every clock
period

Digital design
Hardware implementation of a register bit-shift:

32-bit register
combinational

circuit

Software implementation of a register bit-shift:

UINT32 bitshift(UINT32 input)
{
UINT32 t1,t2;

t1=input & 0x00000fff;
t2=input & 0xfffff000;
return (t1 << 20) | (t2 >> 12);

}

sequence of
instructions for the mP
(1 shift every n clock
cycles)

simple wiring
(1 shift every clock

cycle)

Lattice FPGA

×
×

×
× +

-

+

-

e

i
f

h

d

i
f
g

×
×

+

-

d

h
e
g

+

-

+

×
a

×
b

×
c

| A |

a b c
d e f
g h i

A =

Calculating the determinant of a 3x3 matrix

×
×

×
× +

-

+

-

e

i
f

h

d

i
f
g

×
×

+

-

d

h
e
g

+

-

+

×
a

×
b

×
c

| A |

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

DSP Development

For the DSP-only approach, functions like
FIR filters, FFTs and Correlators are available
as pre-built, assembly optimized, C-callable
library functions.

Challenges arise while trying to optimize the
performance of a function for a particular DSP
requiring an in-depth knowledge of the
processor architecture.

However, DSP designers in general are more
comfortable with the DSP-only approach due
to ease of implementation.

FPGA co-processor approach requires
hardware knowledge to assemble the various
components of the FPGA co-processing
system (EMIF/FIFO interface, transmit and
receive FIFO buffers, and co-processing
function).

The availability of architecturally optimized
pre-built IP functions from FPGA vendors
like Altera & Xilinx aid in the
implementation of co-processors

Hardware Description Language
PROCESS (clk)
BEGIN
IF (clk'event and clk = '1') THEN
a_reg <= (a);
b_reg <= (b);
pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;
END IF;
END process;
accum_out <= (adder_out);

FPGA Development

How to implement DPP algorithms
for real time applications ?

DSP: Digital Signal Processor

FPGA: Field Programmable Gate Array

ASIC: Application Specific Integrated Circuit

DSPs evolution: h/w features

DEVELOPMENTDEVELOPMENT

Harvard architecture

Data format:
 early ’80s: fixed point

 late ’80s: floating point
(often non IEEE).

DMA

 Fixed-width instruction set

TMS320C10

DSP56000DSP56000MPD7720

AT&TDSP32

CONSOLIDATIONCONSOLIDATION

 Parallel architectures

 Fewer manufacturers (TI & AD)

 Multiprocessing support

TMS320C40 TMS320C6xxx BLACKFIN

TigerSHARCTMS320C5xxxTMS320C5xxx

1980 1990 2000

PROGRAM
MEMORY

instructions
& data

DATA
MEMORY

data only

PM address bus DM address bus

Instruction
cache

Program
sequencer

PM data
address

generator

DM data
address

generator

PM data bus

REGISTERS
normal/extended

precision

MULTIPLIER

ALU

SHIFTER

DM data busDSP

DSP chip

DMA

I/O, memory

Fast computation

MAC (Multiply & Accumulate)MAC (Multiply & Accumulate)--centeredcentered architecturearchitecture

one instruction cycle
multiplication & accumulation

DSP programming
 DSPs: programmed by software.

 Languages:

 High-level software tools (ex. MATLAB, National Instruments …) to
automatically generate files. → Rapid prototyping!

 Cross-compilation: code developed & compiled on different machine (PC,
SUN…) then uploaded to DSP & executed.

 Code building tools from DSP manufacturers.

 Trend: more complex, powerful & user-friendly development tools.

 Assembly

 high-level languages (ANSI C, C extensions/dialects, C++, …)

Numerical fidelity

 Wide accumulators/registers for precision & overflow avoidance:
guard bits.

 Overflow/underflow flags.
 Saturated arithmetic when

overflowing.
 Floating point arithmetic:

high dynamic range/precision.

Readout chain with DSPs

Code development setup. Example: AD beam intensity measurement (TI ‘C40 DSP), CERN ‘98.

PowerPC board + PowerPC board +
LynxOSLynxOS

(MasterVME)(MasterVME)

JTAG cable + emulator podJTAG cable + emulator pod

DSP boardDSP board

VME crateVME crate

WindowWindow--based PCbased PC

DSP code development/debuggingSystem use from Control Room

Readout chain with DSPs and FPGAs

Digital system:
typical building

blocks

Floating point designs

• To work in floating point you (potentially) need
blocks to:
– Convert from fixed point to floating point and back.
– Convert between different floating point types.
– Multiply.
– Add/subtract (involves an intermediate representation

with same exponent for both operands).
– Divide.
– Square root.
– Compare 2 numbers.

• The main FPGA companies provide these in the form
of IP cores. You can also roll your own.

Some performance figures (single precision)

Unsigned integer

Decimal Bit pattern
15 1111
14 1110
13 1101
12 1100
11 1011
10 1010
9 1001
8 1000
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000

Sign & magnitude

Decimal Bit pattern
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
0 1000
-1 1001
-2 1010
-3 1011
-4 1100
-5 1101
-6 1110
-7 1111

2’s complement

Decimal Bit pattern
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

Fixed point (integers)Fixed point (integers)

Fixed point (fractional numbers)Fixed point (fractional numbers)

Example: 3 integer bits and 5 fractional bits

Floating point binary numbersFloating point binary numbers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIGN
(1 bit)

EXPONENT
(8 bits)

MANTISSA
(23 bits)

M=1.m22m21m20…m2m1m0

Value = (-1)S x M x 2E-127

Max value: ± (2-223) x 2128 = ± 6.8 x 1038

Min value: ± 1.0 x 2-127 = ± 5.9 x 10-39

