
Design flow, tools for development
and debug with FPGAs

Davide Falchieri

Data driven front-end electronics for highly segmented radiation detectors
25-27 November 2013

Outline

• FPGA Design flow

• FPGA debug

• Embedded processor design flow

• Simple design example on a demo board

Xilinx FPGA design flow: ISE

design
hierarchy

design
flow

VHDL
editor

Xilinx FPGA design flow

HDL

Synthesis

Implementation

Download

design entry
Implement your
design using
VHDL or Verilog

Functional
Simulation

Timing
Simulation

In-Circuit
Verification

Behavioral
Simulation

VHDL for modeling digital systems

VHDL is intended for describing and
modeling a digital system at various levels
from the most abstract down to the gate
level. VHDL is meant as a modeling
language for specification and simulation,
but can also be used for synthesis.

Advantages:
• able to describe concurrent instructions
• the code can be re-used from one project
to an other, the same for single blocks
(cores)
• can be simulated and synthesized
• takes less time than schematics

Process

A
Sequential
Statements

Process

B
Sequential
Statements

Process

C
Sequential
Statements

processes run parallel

Design hierarchy

Toplevel
(DUT)

spi
interface adc

slow
clock icon ila

VHDL entry
• Write your own VHDL

• Make extensive use of the soft cores available for free from
manufacturers or directly on the Web (have a look to
www.opencores.org or www.ohwr.org if interested)
For example use the Xilinx Core Generator if you need a fixed point
divider block. A wizard allows you to choose the divider parameters
and produces a synthesizable core.
• Simulate the code!

run0:process
begin
if(rising_edge(ck)) then

if (godiv = '1') then
num_temp <= num;
den_temp <= den;

end if;
end if;

end process run0;

ISIM
Xilinx ISIM is a Hardware Description Language (HDL) simulator
that lets you perform behavioral and timing simulations for VHDL,

Verilog and mixed VHDL/Verilog language designs

DUT

testbench

stimulus

stimulus

Its use is convenient when the DUT equals to the ISE projects.
Otherwise when the simulation blocks are much larger, other

simulation tools perform better, for instance Modelsim

Behavioral
SimulationHDL

Synthesis

Implementation

Download

HDL

Synthesize the
design to create
an FPGA netlist

Functional
Simulation

Timing
Simulation

In-Circuit
Verification

FPGA design flow

Logic Synthesis



Register

a
b

output

clk

reset

clear

D Q

process(clk, reset)

begin

if reset = ‘1‘ then
output <= ‘0‘;

elsif rising_edge(clk) then
output <= a XOR b;

end if;

end process;

HDL
(VHDL /
Verilog)

Synthesize

Netlist

Map

Place

Route

Bitstream

UCF

Timing constraints

The synthesis process tries to satisfy the constraints put by
the designer in the UCF (User Constraint File):
it is usually a timing constraint

This timing constraint asks the synthesizer (and later to the
place & route tool) to build a circuit able to work at 50 MHz
without having setup/hold violations.

Navigating in the schematics

Behavioral
SimulationHDL

Synthesis

Implementation

Download

HDL

Translate, place
and route, and
generate a
bitstream to
download in the
FPGA

Functional
Simulation

Timing
Simulation

In-Circuit
Verification

FPGA design flow

Implementation

LUT

LUT

?
Assign a logical

LUT to a physical
location

Select wire segments
and switches for
interconnection

1. Technology Mapping

2. Placement

3. Routing

map

Group logical symbols from the netlist (gates) into
physical components (slices and IOBs)

Routing Example

Programmable Connections

FPGA

Physical constraints

The place & route tools place the logical
I/O signals (in the VHDL entity of the
toplevel) in the IOBs, checking that the
banking rules are respected

Static Timing Analyzer
• Performs static analysis of the circuit performance
• Reports critical paths with all sources of delays
• Determines maximum clock frequency
• Critical Path – The Longest Path From Outputs of

Registers to Inputs of Registers

D Q
in

clk
D Q

out

tP logic

tCritical = tP FF + tP logic + tS FF

• Min. Clock Period = Length of The Critical Path
• Max. Clock Frequency = 1 / Min. Clock Period

Timing closure
Timing closure is achieved when all timing constraints for a design are met
under all legal operating conditions PVT:
• Process
• Voltage
• Temperature

Timing closure is achieved when the design is fully constrained and the
timing score is zero. The timing score:
• is the total value representing the timing analysis for all constraints and
the amount by which the constraints are failing
• is the sum in picoseconds of all timing constraints that have not been met

Timing closure
quest flow

SmartXplorer

SmartXplorer tries up to 7 different implementation strategies
until the timing closure is achieved, if possible at all
Timing closure is difficult when:
• the percentage of usage of the FPGA resources is higher than
60-70 %
• the timing constraints are close to the physical limits of the
device

Coding guidelines

from UG612

Xpower analyzer

• XPower is used to estimate
the power consumption and
junction temperature of
your FPGA
– Reads an implemented

design (NCD file) and
timing constraint data

– You supply activity rates,
clock frequencies, capacitive
loading on output pins,
power supply data, and
ambient temperature

• The FPGA Editor is a graphical
application that displays

– Device resources
– Precise layout of the chosen

device
• The FPGA Editor is commonly

used to
– View device resources
– Make minor modifications

• Done late in the design
cycle

• Does not require re-
implementation of the
design

• Changes are NOT back-
annotated to the source
files

– Insert probes
– Make short-term functional

changes for in-circuit
verification

FPGA editor

Xilinx programming cable

USB

It allows to:
• program the FPGA
• debug its behavior by spying internal signals

ISE Impact

Impact allows to access via JTAG the devices on the chain, in this
case one FPGA + one PROM.
Impact allows to:
• configure the FPGA
• program and readback the PROM
• play with the standard JTAG state machine in case of problems

ChipScope is an embedded, software based, logic analyzer, with 3 main blocks:
• ICON (Integrated CONtroller): A controller module that provides communication between the
ChipScope host PC and ChipScope modules in the design (such as VIO and ILA).
• VIO (Virtual Input/Output): A module that can monitor and drive signals in your design in real-
time. You can think of them as virtual push-buttons (for input) and LEDs (for output). These can
be used for debugging purposes, or they can incorporated into your design as a permanent I/O
interface.
• ILA (Integrated Logic Analyzer): A module that lets you view and trigger on signals in your
hardware design. Think of it as a digital oscilloscope (like ModelSim’s waveform viewer) that you
can place in your design to aid in debugging.

Chipscope PRO

Chipscope PRO

Using Chipscope to debug the behavior of a FPGA
interfacing the VME bus

Chipscope PRO – system monitor

ISIM – Chipscope interaction

Real life is often different from what you see in simulation.
What to do if simulation works fine, while live debug shows
problems ?

One trick could be the following:
- spy with Chipscope the I/O signals of the faulty module,
- run ISIM using as a stimulus the inputs taken with
Chipscope
- compare ISIM outputs with Chipscope outputs.

Usually a logical problem is not revealed by the sets of
stimuli used in simulation, while it is immediately spotted in
real life.

Embedded processors

embedded
processor

Having an embedded processor in the FPGA can be convenient:
• the FPGA can handle all the high-throughput real-time tasks,
• the embedded processor can handle the common interfaces, like
Ethernet, DDR2, UART, SPI, …

In this way the FPGA design flow changes a bit, providing some
work to do also to SW designers

Embedded Development Tool Flow Overview

Data2MEM

Download Combined
Image to FPGA

Compiled ELF Compiled BIT

RTOS, Board Support Package

Embedded
Development Kit

Instantiate the
‘System Netlist’
and Implement

the FPGA

?

HDL Entry

Simulation/Synthesis

Implementation

Download Bitstream
into FPGA

Chipscope

Standard FPGA
HW Development Flow

VHDL or Verilog

System Netlist
Include the BSP
and Compile the
Software Image

?

Code Entry

C/C++ Cross Compiler

Linker

Load Software
Into FLASH

Debugger

Standard Embedded
SW Development Flow

C Code

Board Support
Package

12 3 Compiled BITCompiled ELF

ISE
EDK XPS

SDK

Embedded Development Tools

From ISE and using the Core generator,
it is possible to insert a soft or hard
processor to the design hierarchy.
This lead to the use of 2 other tools.

EDK XPS
SDK

EDK XPS

• XPS provides an integrated environment for creating software and
hardware specification flows for embedded processor systems based on
MicroBlaze™ and PowerPC® processors.
• XPS offers customization of tool flow configuration options and provides
a graphical system editor for connection of processors, peripherals, and
buses.

SDK

The Xilinx Software Development Kit (SDK) is the recommended
development environment for software application projects. SDK is based
on the Eclipse open source standard.

Spartan 3AN Starter Kit board

XC3S700AN in the
Pb-free 484-ball
BGA package

(FGG484)

USB

Ethernet

VGA RS232

see also UG 334

Backup

MicroBlaze System

MicroBlaze
32-Bit RISC Core

UART10/100
E-Net

Memory
Controller

Off-Chip
Memory

FLASH/SRAM

Fast Simplex
Link

0,1….15

Custom
Functions

Custom
Functions

BRAM
Local Memory

Bus
D-Cache
BRAM

I-Cache
BRAM

Configurable
Sizes

A
rb

ite
r PLB

Processor Local Bus

CacheLink

SDRAM

On-Chip Peripheral Bus

GPIO

Bus
Bridge

OPB

A
rb

ite
r

On-Chip
Peripheral

