

European Organization for Nuclear Research

Design flow, tools for development and debug with FPGAs

Davide Falchieri

Data driven front-end electronics for highly segmented radiation detectors 25-27 November 2013

Outline

- FPGA Design flow
- FPGA debug
- Embedded processor design flow
- Simple design example on a demo board

Xilinx FPGA design flow: ISE

design hierarchy

design flow

Xilinx FPGA design flow

VHDL for modeling digital systems

VHDL is intended for describing and modeling a digital system at various levels from the most abstract down to the gate level. VHDL is meant as a modeling language for specification and simulation, but can also be used for synthesis.

Advantages:

- able to describe concurrent instructions
- the code can be re-used from one project to an other, the same for single blocks (cores)
- can be simulated and synthesized
- takes less time than schematics

Design hierarchy

VHDL entry

• Write your own VHDL

```
run0:process
begin
if(rising_edge(ck)) then
if (godiv = '1') then
        num_temp <= num;
        den_temp <= den;
    end if;
end if;
end if;</pre>
```

• Make extensive use of the soft cores available for free from manufacturers or directly on the Web (have a look to www.opencores.org or www.ohwr.org if interested) For example use the Xilinx Core Generator if you need a fixed point divider block. A wizard allows you to choose the divider parameters

and produces a synthesizable core.

• Simulate the code!

ISIM

Xilinx **ISIM** is a Hardware Description Language (HDL) simulator that lets you perform behavioral and timing simulations for VHDL, Verilog and mixed VHDL/Verilog language designs

Its use is convenient when the DUT equals to the ISE projects. Otherwise when the simulation blocks are much larger, other simulation tools perform better, for instance **Modelsim**

FPGA design flow

Logic Synthesis

Timing constraints

The synthesis process tries to satisfy the constraints put by the designer in the UCF (User Constraint File): it is usually a timing constraint

```
NET "CK" TNM_NET = CK;
TIMESPEC TS_CK = PERIOD "CK" 20 ns HIGH 50%;
```

This timing constraint asks the synthesizer (and later to the place & route tool) to build a circuit able to work at 50 MHz without having setup/hold violations.

Navigating in the schematics

FPGA design flow

Implementation

1. Technology Mapping

Group logical symbols from the netlist (gates) into physical components (slices and IOBs)

Assign a logical LUT to a physical location

3. Routing

Select wire segments and switches for interconnection

Routing Example

Physical constraints

NET "SPI_MOSI" LOC = "AB14" |IOSTANDARD = LVCMOS33 |SLEW = SLOW |DRIVE = 8; NET "SPI SCK" LOC = "AA20" |IOSTANDARD = LVCMOS33 |SLEW = SLOW |DRIVE = 8;

AMP pins

NET "AMP_CS" LOC = "W6" |IOSTANDARD = LVCMOS33 |SLEW = SLOW |DRIVE = 8; NET "AMP SHDN" LOC = "W15" |IOSTANDARD = LVCMOS33 |SLEW = SLOW |DRIVE = 8;

ADC pins

```
NET "AD_CONV" LOC = "Y6" |IOSTANDARD = LVCMOS33 |SLEW = SLOW |DRIVE = 8;
NET "AD_DOUT" LOC = "D16" |IOSTANDARD = LVCMOS33;
```

#DAC pins NET "DAC_CS" LOC = "W7" |IOSTANDARD = LVCMOS33 |SLEW = SLOW |DRIVE = 8 ; NET "DAC_CLR" LOC = "AB13" |IOSTANDARD = LVCMOS33 |SLEW = SLOW |DRIVE = 8 ;

#system pins NET "CK" LOC = "E12" |IOSTANDARD = LVCMOS33; NET "RESET" LOC = "V8" |IOSTANDARD = LVCMOS33;

The place & route tools place the logical I/O signals (in the VHDL entity of the toplevel) in the IOBs, checking that the banking rules are respected

Static Timing Analyzer

- Performs static analysis of the circuit performance
- Reports critical paths with all sources of delays
- Determines maximum clock frequency
- Critical Path The Longest Path From Outputs of Registers to Inputs of Registers

- Min. Clock Period = Length of The Critical Path
- Max. Clock Frequency = 1 / Min. Clock Period

Timing closure

Timing closure is achieved when all timing constraints for a design are met under all legal operating conditions PVT:

- Process
- Voltage
- Temperature

Timing closure is achieved when the design is fully constrained and the **timing score** is **zero**. The timing score:

• is the total value representing the timing analysis for all constraints and the amount by which the constraints are failing

• is the sum in picoseconds of all timing constraints that have not been met

Top Project Status (06/13/2013 - 17:42:30)									
Project File:	ADC_DAC.xise	Parser Errors:	No Errors						
Module Name:	Тор	Implementation State:	Programming File Generated						
Target Device:	xc3s700an-4fgg484	• Errors:	No Errors						
Product Version:	ISE 14.6	• Warnings:	116 Warnings (16 new)						
Design Goal:	Balanced	 Routing Results: 	All Signals Completely Routed						
Design Strategy:	Xilinx Default (unlocked)	 Timing Constraints: 	<u>All Constraints Met</u>						
Environment:	System Settings	• Final Timing Score:	0 (Timing Report)						

SmartXplorer

SmartXplorer Results

MapExtraEffortIOReg implementation results were copied to current project, and implementation properties updated to reflect the strategy. MapExtraEffortIOReg is the best strategy.

	Strategy	Host	Output	Status	Timing Score	Run Time	LUTs	Slice Registers	WorstCaseSlack
	MapRunTime	utente-PC	run1	Deleted	5537	00h 30m 04s	18,797 (20%)	20,000 (10%)	-0.761ns
m	MapLogicOpt	utente-PC	run2	Deleted	0	00h 30m 15s	18,907 (20%)	20,000 (10%)	0.000ns
	MapGlobOptIOReg	utente-PC	run3	Failed Par	None	00h 27m 27s	18,543 (20%)	20,506 (11%)	None
m	MapRegDup	utente-PC	run4	Deleted	0	00h 29m 36s	18,760 (20%)	20,000 (10%)	0.003ns
	MapExtraEffortIOReg	utente-PC	run5	Done	0	00h 27m 06s	18,908 (20%)	19,974 (10%)	0.000ns
1	MapLogOptRegDup	utente-PC	run6	Deleted	0	00h 29m 06s	18,907 (20%)	20,000 (10%)	0.000ns
	MapExtraEffort2	utente-PC	run7	Deleted	104197	00h 25m 58s	18,866 (20%)	20,000 (10%)	-2.552ns

SmartXplorer tries up to 7 different implementation strategies until the timing closure is achieved, if possible at all Timing closure is difficult when:

- the percentage of usage of the FPGA resources is higher than 60-70 %
- the timing constraints are close to the physical limits of the device

Coding guidelines

Xilinx recommends that you:

- Implement synchronous design techniques
- Use Xilinx specific coding
- Use cores

The XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687) contains many example of how to code efficiently to target available device features. For a link to this guide, see Appendix A, Additional Resources.

Follow these coding guidelines to ensure an optimal netlist:

- Avoid high level loop constructs.
- Use case statements for large decoding.
- Avoid nested if-then-else statements.
- Do not create internally generated clocks except though DCM or PLL.
- Minimize the number of clocks in the design.
- Make sure that internally created resets are synchronous.
- Use only one edge of the clock.
- Use edge-triggered flip-flops (avoid latches).
- Cross-clock domains via synchronization circuits.
- Register top-level inputs and outputs for fastest performance and increased pin-locking capability.
- Use hierarchy to separate functionality and clock domains.
- Employ pipelining for critical paths.
- Comment your code to highlight Multi-Cycle paths and critical paths.

from UG612

Xpower analyzer

- XPower is used to estimate the power consumption and junction temperature of your FPGA
 - Reads an implemented design (NCD file) and timing constraint data
 - You supply activity rates, clock frequencies, capacitive loading on output pins, power supply data, and ambient temperature

			×	Name	Frequency (M	Capacitive Lo	DC Load (mA)
	Voltage (V)	Current (mA)	Power (mW)	final data 0 OBUF	12.49	35000.00	0
/ccint	12		· · · · · · · · · · · · · · · · · · ·	final_data_1_OBUF	12.49	35000.00	0
Dunamic	1.6	76.68	92.01	final_data_2_OBUF	12.49	35000.00	Ö
Quiescent		46.00	55.20	final_data_3_0BUF	12.49	35000.00	0
/ccaux	25	40.00		final_data_4_OBUF	12.49	35000.00	0
Dunamic	2.0	0.00	0.00	final_data_5_OBUF	12.49	35000.00	0
Quiescent		47.80	119.50	final_data_6_0BUF	12.49	35000.00	0
/cco25	25		1.0.00	final_data_7_0BUF	12.49	35000.00	0
Dunamic	2.0	100.52	251.31	mac_cha_0_OBUF	12.49	35000.00	0
Quiescent		0.00	0.00	mac_cha_10_OBUF	12.49	35000.00	0
otal Power			518.02	mac_cha_11_OBUF	12.49	35000.00	0
Startun Current (m		0.00		mac_cha_12_OBUF	12.49	35000.00	0
Rattery Canacity (m	A Hours)		0.00	mac_cha_13_OBUF	12.49	35000.00	0
Rattery Life (Hours)			0.00	mac_cha_14_OBUF	12.49	35000.00	0
				mac_cha_15_OBUF	12.49	35000.00	0
				mac_cha_16_OBUF	12.49	35000.00	0
Summary Pow	ver Subtotals C	urrent Subtotals	Thermal	mac_cha_17_OBUF	12.49	35000.00	0
	^			mac_cha_18_OBUF	12.49	35000.00	0
			×	mac_cha_19_OBUF	12.49	35000.00	0
🔄 Data Views				mac_cha_1_OBUF	12.49	35000.00	0
🕂 🦳 Types				mac_cha_20_0BUF	12.49	35000.00	0
😐 🦲 Clor	cks			mac_cha_2_OBUF	12.49	35000.00	0
	ite			mac_cha_3_OBUF	12.49	35000.00	0
E 🛄 Inpo	ic			mac_cha_4_0BUF	12.49	35000.00	C C
	nu to			mac_cha_5_OBUF	12.49	35000.00	0
	puis			mac_cha_6_0BUF	12.49	35000.00	0
😑 📴 sign	nais			mac_cha_7_0BUF	12.49	35000.00	(
- Heport Views	8			mac_cha_8_OBUF	12.49	35000.00	0
				mac cha 9 OBUF	12.49	35000.00	(
				<			

FPGA editor

- The FPGA Editor is a graphical application that displays
 - Device resources
 - Precise layout of the chosen device
- The FPGA Editor is commonly used to
 - View device resources
 - Make minor modifications
 - Done late in the design cycle
 - Does not require reimplementation of the design
 - Changes are NOT backannotated to the source files
 - Insert probes
 - Make short-term functional changes for in-circuit verification

Xilinx programming cable

It allows to:

- program the FPGA
- debug its behavior by spying internal signals

ISE Impact

Impact allows to access via JTAG the devices on the chain, in this case one FPGA + one PROM.

Impact allows to:

- configure the FPGA
- program and readback the PROM
- play with the standard JTAG state machine in case of problems

Chipscope PRO

ChipScope is an embedded, software based, logic analyzer, with 3 main blocks:

• **ICON** (Integrated CONtroller): A controller module that provides communication between the ChipScope host PC and ChipScope modules in the design (such as VIO and ILA).

• **VIO** (Virtual Input/Output): A module that can monitor and drive signals in your design in realtime. You can think of them as virtual push-buttons (for input) and LEDs (for output). These can be used for debugging purposes, or they can incorporated into your design as a permanent I/O interface.

• ILA (Integrated Logic Analyzer): A module that lets you view and trigger on signals in your hardware design. Think of it as a digital oscilloscope (like ModelSim's waveform viewer) that you can place in your design to aid in debugging.

Chipscope PRO

ChipScope Pro Analyzer [prm]	and the second second second	-	-		(Tokunit)		2
<u>File View JTAG Chain Device Trigger</u>	r Setup W <u>a</u> veform <u>W</u>	indow	<u>H</u> elp				
Trigger Run Mode: Single 💌	▶ ■ T! 🔄	č č	90	R & \$	R		
Project: prm	Waveform - DEV:	1 MyDev	vice1 ()	(C6SLX45)	UNIT:0 MyILA0 (ILA)		ř
JTAG Chain DEV:0 MyDevice0 (XCF16P)	Bus/Signal	x	0	00 -20	60 140 220 300 380) 460 540 620 700 780 860 940 1020 1100 1180 1260 1340 1420 1500 1580 1660 1740 1820 190	D
UNIT:0 MyILA0 (ILA)	• vme_am	ЗF	ЗF	3F XX	3F XXXXXX	(3FXXXXXXXXXXXXXXXXXXXXXXXXXX	3
- Trigger Setup	-vme_as	0	0				
Listing	-vme_dsa	0	0	Π			_
Bus Plot	- vme_dsb	0	0		ллл		
	vme write	0	0				
Signals: DEV: 1 UNIT: 0	- vme gap	0	0				
P Data Port	- board address	19	19			19	7
• vme_am		1	1				=
wme_data_out CH: 0 mdsn hcntl0	vme_data_dir	1	1				792
- CH: 1 mdsp_hcntl1	• vme data out	FFFF:	FFFF:	FFXX	FFFFFFF XXXXXX	X FFFFFFF XXXXXXXXXXXXXXXXXXXXXXXXXXXX	7
- CH: 2 mdsp_hrdy - CH: 3 mdsp_cen_n	- vme_ddir	0	0				
- CH: 4 mdsp_rnw	prm_cen	0	0		die die sta		
- CH: 5 masp_nnwii - CH: 6 mdsp_hds1	- mdsp_cen	0	o		ллл		
- CH: 7 mdsp_boot4	- rcf_cen	0	0				
- CH: 9 mdsp_boot2	- data_strb	0	0	Л	ллл		
- CH: 10 mdsp_boot1 - CH: 11 mdsp_boot0	- ill_match	0	0				11
- CH: 12 DataPort[12]	- mdsp_hcnt10	0	o				
- CH: 13 DataPort[13] CH: 14 DataPort[14]	- mdsp_hcntl1	0	0				
- CH: 15 DataPort[15]	-mdsp_hrdy	0	0				
- CH: 16 DataPort[16] CH: 17 DataPort[17]	- mdsp_cen_n	1	1				-
- CH: 18 DataPort[18]	mdsp_rnw	0	0				
- CH: 20 DataPort[20]	- mdsp_hhwil	0	0	Л			
- CH: 21 DataPort[21] - CH: 22 DataPort[22]	- mdsp_hds1	1	1			TTTTTTT	

Using Chipscope to debug the behavior of a FPGA interfacing the VME bus

Chipscope PRO – system monitor

🗐 System Monitor C	onsole - Device:7	ه بر ا
Sensor	Value	History
Die Temperature	Present 39,5 C Device Max 39,5 C Device Min 28,0 C Sampled Max NA Sampled Min NA Window Avg NA Window Max NA Window Min NA	40,0 C - 38,5 C - 37,0 C - 35,5 C - 34,0 C - 32,5 C - 31,0 C - 29,5 C - 28,0 C - 10:38:24, 10:38:40, 10:38:56, 10:39:12, 10:39:28, 10:39:44, 10:40:00, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:16, 10:40:10, 10:40:
VCCINT Supply	Present 0,989 V Device Max 0,999 V Device Min 0,987 V Sampled Max NA Sampled Min NA Window Avg NA Window Max NA Window Min NA	1,000 V - 0,998 V - 0,995 V - 0,992 V - 0,990 V - 0,988 V - 0,985 V - 0,985 V - 0,982 V - 0,980 V - 10:38:24 10:38:40 10:38:56 10:39:12 10:39:28 10:39:44 10:40:00 10:40:16
VCCAUX Supply	Present 2,498 V Device Max 2,502 V Device Min 2,497 V Sampled Max NA Sampled Min NA Window Avg NA Window Max NA Window Min NA	2,510 V - 2,508 V - 2,505 V - 2,503 V - 2,500 V - 2,498 V - 2,498 V - 2,495 V - 2,490 V - 10:38:24 10:38:40 10:38:56 10:39:12 10:39:28 10:39:44 10:40:00 10:40:16

ISIM – Chipscope interaction

Real life is often different from what you see in simulation. What to do if simulation works fine, while live debug shows problems ?

One trick could be the following:

- spy with Chipscope the I/O signals of the faulty module,
- run ISIM using as a stimulus the inputs taken with Chipscope
- compare ISIM outputs with Chipscope outputs.

Usually a logical problem is not revealed by the sets of stimuli used in simulation, while it is immediately spotted in real life.

Embedded processors

Having an embedded processor in the FPGA can be convenient:

- the FPGA can handle all the high-throughput real-time tasks,
- the embedded processor can handle the common interfaces, like Ethernet, DDR2, UART, SPI, ...

In this way the FPGA design flow changes a bit, providing some work to do also to SW designers

Embedded Development Tool Flow Overview

Embedded Development Tools

From ISE and using the Core generator, it is possible to insert a soft or hard processor to the design hierarchy. This lead to the use of 2 other tools.

No Processes Running

Processes: v5gmac125 i - v5gmac125

- **Design Utilities** Manage Processor Design (XPS) 2 (5
 - Generate Top HDL Source
 - Export Hardware Design To SDK without Bitstream
 - Export Hardware Design To SDK with Bitstream

EDK XPS

🗞 Xilinx Platform Studio (EDK_P.68d) - C:\ibl\ise_projects\ROD_revC_validation\master_slave\master\system\v5gmac125.xmp - [System Assembly View]

• XPS provides an integrated environment for creating software and hardware specification flows for embedded processor systems based on MicroBlazeTM and PowerPC® processors.

• XPS offers customization of tool flow configuration options and provides a graphical system editor for connection of processors, peripherals, and buses.

Bus Interfaces	Ports	Addresses							
Instance		-	Base Name	Base Address	High Address	Size	Bus Interface(s)	Bus Name	Lock
È ppc440_0's Add	dress Map								
DDR2_SDR	M_W1D3	2M72R8A_5A	C_MEM_BASEA	0x00000000	0x0FFFFFFF	256M	PPC440MC	ppc440_0_PPC4	
xps_epc_0			C_PRH0_BASEA	0x40000000	0x41FFFFFF	32M	SPLB	plb_v46_0	V
xps_central	_dma_0		C_BASEADDR	0x80200000	0x8020FFFF	64K	SPLB	plb_v46_0	[17]
xps_iic_0			C_BASEADDR	0x81600000	0x8160FFFF	64K	SPLB	plb_v46_0	
xps_ll_fifo_()		C_BASEADDR	0x81A00000	0x81A0FFFF	64K	SPLB	plb_v46_0	[]
xps_spi_0			C_BASEADDR	0x83400000	0x8340FFFF	64K	SPLB	plb_v46_0	[177]
xps_sysmo	n_adc_0		C_BASEADDR	0x83800000	0x8380FFFF	64K	SPLB	plb_v46_0	[m]
xps_timer_1			C_BASEADDR	0x83C00000	0x83C0FFFF	64K	SPLB	plb_v46_0	
xps_timer_()		C_BASEADDR	0x83C20000	0x83C2FFFF	64K	SPLB	plb_v46_0	[17]
RS232			C_BASEADDR	0x84000000	0x8400FFFF	64K	SPLB	plb_v46_0	[177]
Hard_Ether	net_MAC		C_BASEADDR	0x87000000	0x8707FFFF	512K	SPLB	plb_v46_0	[77]
xps_intc_0			C_BASEADDR	0x8C000000	0x8DFFFFFF	32M	SPLB	plb_v46_0	[m]
hpiport_0			C_BASEADDR	0xC0000000	0xC03FFFFF	4M	SPLB:MPLB	plb_v46_0:plb_v	V
mcbsp_rod	_0		C_BASEADDR	0xC6800000	0xC680FFFF	64K	SPLB	plb_v46_0	[[^[1]]
extirq_0			C_BASEADDR	0xC6C00000	0xC6C0FFFF	64K	SPLB	plb_v46_0	
xps_bram_i	f_cntlr_1		C_BASEADDR	0xFFFF0000	0xFFFFFFFF	64K	SPLB	plb_v46_0	

SDK

C/C++ - ClaoMondo/Src/hellowond.c - Allinx SDK		
File Edit Source Refactor Navigate Search Run Project Xiling	x Tools Window Help	
[➡ ➡ 🗟 ➡ 📎 ▾ 🗞 ▾ 🖬 🛛 🗃 ▾ 🛱 ▾ 🚱 ▾ 🤆 ▾ 🮯 ▾	🌼 + 🔕 + 🔌 🖸 😫 🐼 🥙 🖋 + 📝 🗐 👔 💡 + 💝 🔶 + 🔿	*
Project Explorer 🛛 📄 🔄 🔽 🖓 🖓 🖓 🖓	system.xml 🚺 helloworld.c 🛛	
 b bootloader b CiaoMondo CiaoMondo_bsp ciaoMondo_bsp standalone_bsp_lwip standalone_bsp_nonet III system_hw_platform 	<pre>dataC = Tormatter_D[0xo3];</pre>	
	//for [[]=0;1<150;1++)]	
	<pre>//{ //dollA(); usleep(5); //} for (1=0;1<300;1++) { dollA(); usleep(1+1%5); } ////////////////////////////////</pre>	
	<pre>cleanup_platform(); return 0; }</pre>	
	<pre> woid wait600n() { int st,ss; ss=0; for (st=0; st<10;st++) ss=ss+1; return; } </pre>	E

The Xilinx Software Development Kit (**SDK**) is the recommended development environment for software application projects. SDK is based on the Eclipse open source standard.

Spartan 3AN Starter Kit board

VGA **RS232** Ethernet DIGILEN XILINX USB

XC3S700AN in the Pb-free 484-ball BGA package (FGG484)

see also UG 334

Backup

MicroBlaze System

