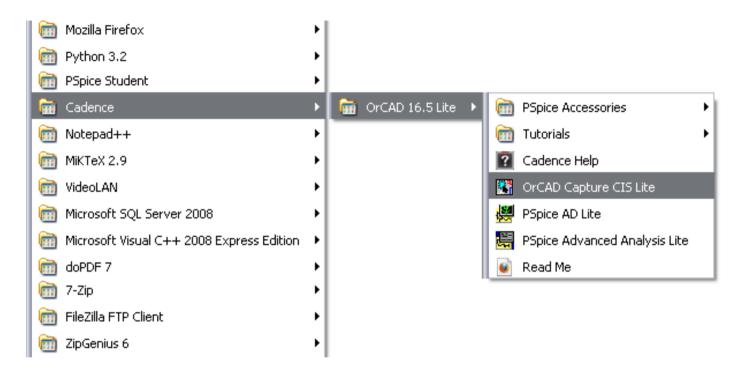
PSpice Tutorial

(usage of simulator) × (common sense) \approx constant

L. Pacher

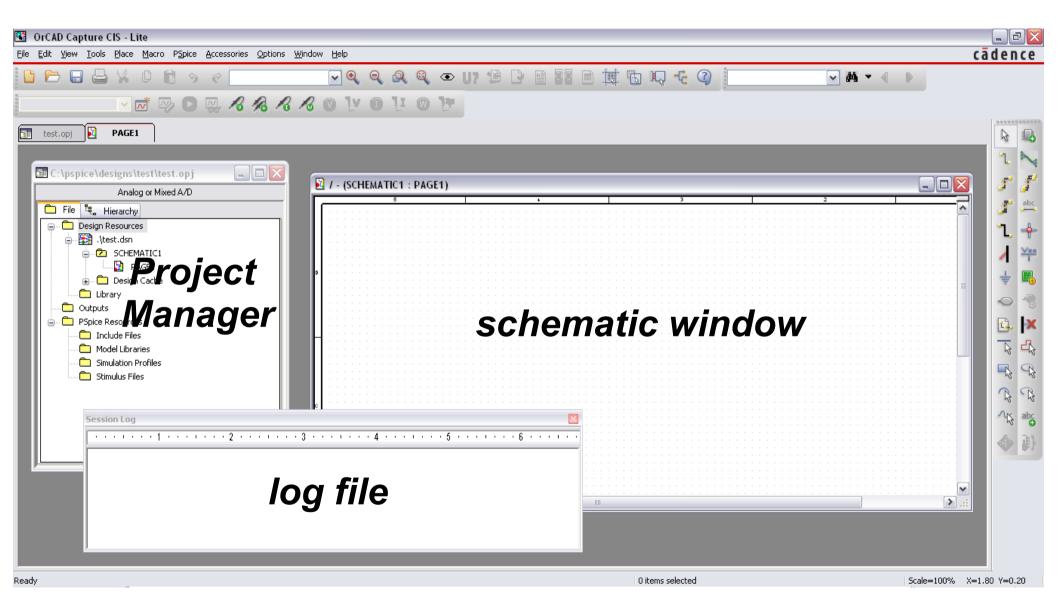
SPICE

- Simulation Program with Integrated Circuits Emphasis
- Berkeley University open source code (initially coded in FORTRAN, rewritten in C)
- analog-only circuits simulator
- command-line tool with a plain text input file (.cir)
 - interpreted 'markup' and programming language (both UNIX and MS-DOS shells)
 - *input file = netlist + electrical models + analysis statements*
 - spice < inputFile.cir | more
 - plain text output file
- new SPICE-like commercial versions with graphical interfaces :


PSpice, HSpice, LTSpice, Spectre etc.

PSpice

Personal SPICE


- the SPICE version for personal computers with MS Windows operating systems
- analog, digital and mixed-signals simulator
- initially developed by MicroSim and then bought by OrCAD
- at present purchased by Cadence Design Systems
- free versions:
 - **PSpice Student 9.1** max. 10 transistors
 - OrCAD PCB Designer 16.5 Lite (demo) max. 20 transistors
- industry standard PCB development suite

Tools overview

- Capture schematic entry tool
- PSpice A/D analog, digital and mixed-circuits simulator
- PSpice Advanced Analysis Monte Carlo, sensitivity/worst case etc. analyses
- PSpice Model Editor edit text SPICE models or extract models from data sheets
- PSpice Stimulus Editor graphical editor for time-based waveform

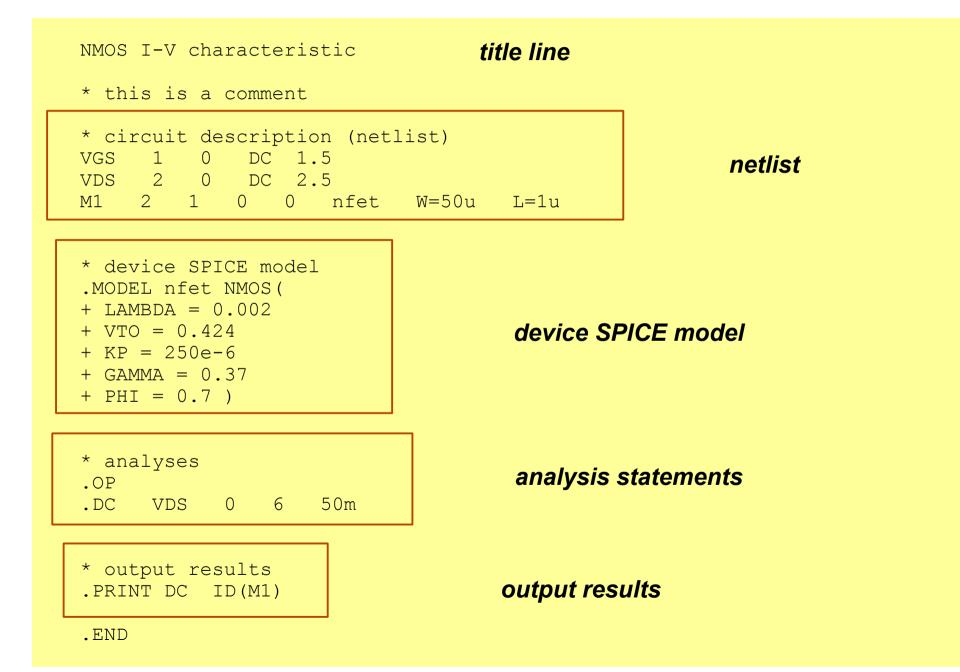
Getting started

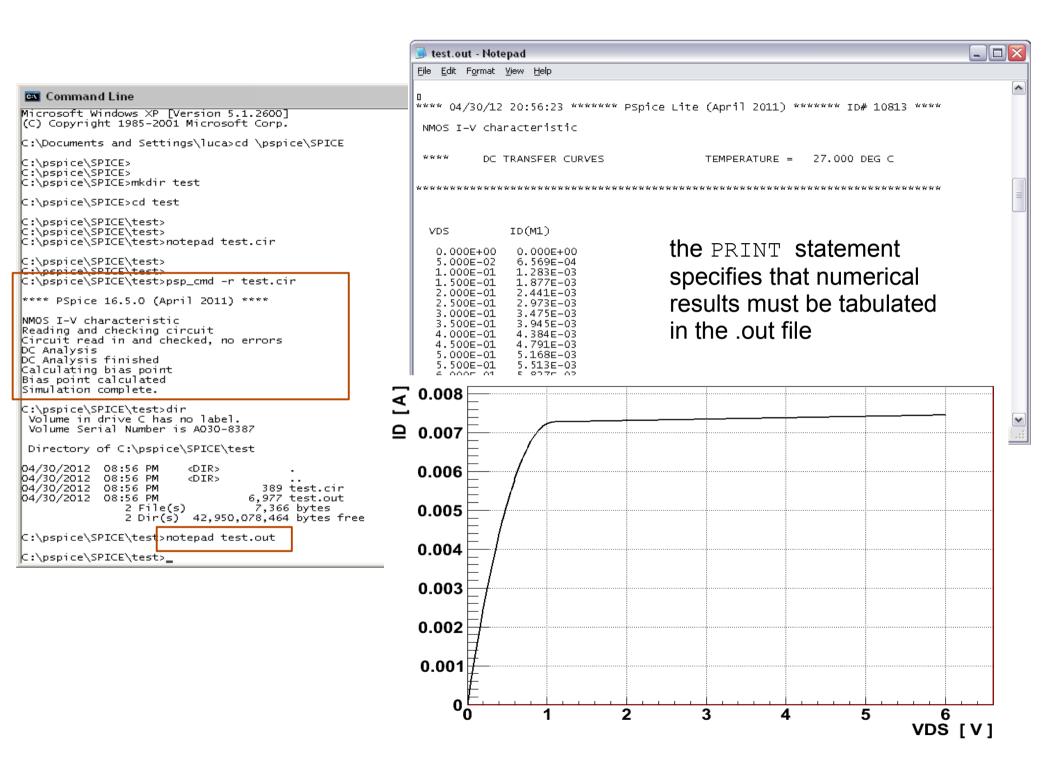
Working with projects

New Open Save	•	Project	
E <u>S</u> ave	•	Design	
Save <u>A</u> s.	Ctrl+S Library As VHDL File	specify a i with the s	
Print Pres <u>P</u> rint P <u>r</u> int Setu	Ctrl+P	V <u>e</u> rilog File <u>T</u> ext File	 simulation choose th
Import D	esign		
<u>Change</u> I E <u>x</u> it		act Lloing g or Mixed A/D ard Wizard mmable Logic Wizard	Cancel <u>H</u> elp Tip for New Users Create a new Analog or Mixed A/D project. The new project may be blank or copied from an existing template.

- your work is organized into projects (.opj main file)
- specify a new folder in C:\pspice\designs
 with the same name of the project
- simulations with PSpice are available only if you choose the *Analog or Mixed A/D* option

O Create based upon an existing project	<u>ок</u>
AnalogGNDSymbol.opj	Browse
⊙ Create a blank project	Cancel Help


Running SPICE programs


- you can run SPICE programs with PSpice at the Windows command-line by using pspice.exe or psp_cmd.exe executables
 - pspice [options] [input file(s)]
 - write the SPICE program with a simple text editor and save it as a .cir file
 - at the command line type one of the following:

pspice -r inputFile.cir (interactive mode)
psp cmd -r inputFile.cir (batch mode)

- PSpice produces a plain text **.out** file containing simulation results
- the .cir file must be placed in the same directory where you run the command
- %CDSROOT%\tools\pspice must be in the PATH environment variable

Input file example

A little SPICE primer

- basic syntax:
 - SPICE is *not case-sensitive*, upper case and lower case letters are equivalent
 - comments begin with *
 - all statements begin with a dot, e.g. .OP .TRAN .PRINT .PLOT
 - leading + characters indicate a *line continuation*
 - netlist elements and analysis statements can be written in any order
- netlist and analysis directives are *automatically generated* by a *shematic entry tool* (*Capture* in PSpice)
- you are not required to learn SPICE programming, but you should be able to read and understand the *PSpice text output file* !
- more knowledge about SPICE is useful to better understand Capture symbols parameters and PSpice simulations and options

Netlist

- 'schematic' is a meaningless word for SPICE, just a human graphical visualization of the circuit
- a *netlist* is the SPICE description of a circuit using a simple description language
- each component has two or more terminals attached to nodes
 - each circuit node is identified by a unique name (a number, a character or a string)
 - at least one node MUST be named 0 for the ground (common reference)
 - no simulations can be performed with a missing 0 node (*floating-node error*)
- circuit components are identified by letters (e.g. R for resistors, M for MOSFETs etc.)
- each component line follows the simple syntax:

component node1 node2 node3 .. value(s)

component	basic SPICE syntax		
resistor	Rxx node1 node2 [model_name] value [TC=]		
capacitor	Cxx node1 node2 [model_name] value [IC=]		
inductor	Lxx nodel node2 [model name] value [IC=]		
diode	Dxx nodel node2 model_name		
BJT	Qxx C B E [sub] model_name		
MOSFET	Mxx D G S B model_name [L=] [W=] +[AD=] [AS=] [PD=] [PS=]		
VDC [1]	Vxx node1 node2 [DC] value		
VAC	Vxx node1 node2 [[DC] value] AC value		
VSIN ^[2]	Vxx node1 node2 SIN(VOFF VAMPL FREQ +[TD][DF][PHASE])		
VPULSE	Vxx nodel node2 PULSE(V1 V2 TD TR TF PW PER)		
VPWL ^[3]	Vxx nodel node2 PWL(t0 V0 t1 V1 tn Vn)		

- [] indicate optional terms
- [1] current sources (IDC, IAC, ISIN, IPULSE, etc.) follow the same syntax
- [2] more in general an exponential-dumped sinusoidal waveform
- [3] piece-wise linear

PSpice netlist generation

🚯 OrCAD Capture CIS - Lite	
File Edit View Tools Place Macro	PSpice Accessories Options Window Help
🗅 🗁 🖬 🖨 ½ O (Image: Mew Simulation Profile Image: Constraint of the second s
MOS-chara* NMOS*	Run F11 View Simulation Results F12 View Output File View Output File
C:\pspice\designs\MOS-ch	Create Netlist View Netlist CHEMATIC1 : NMOS)
Analo	Advanced Analysis
File 🔩 Hierarchy	Markers Bias Points
.\mos-characteristics .\mos-characteristics 	.dsn

🚯 OrCAD Capture CIS - Lite		
	e Accessories Options Window Help	
	Agew Simulation Profile Image: Q Q Q Image: Q <t< th=""><th></th></t<>	
MOS-chara* NMDS*	reate Netlist	
Anal A File 💐 Hierarchy	Advanced Analysis	
Image: Control of the second secon	<pre>C:\pspice\designs\WOS-characteristics\mos-characteristics-pspicefiles\schematic1\schematic1.net</pre>	

Placing grounds

- remind: at least one node must be named 0 (floating-node error otherwise)
- go to *Place* > Ground or press G
- use CAPSYM / 0 or any other CAPSYM /GND symbol (GND, GND_EARTH, etc) but change Name into 0

Place Ground 🛛 🔀	Place Ground 🛛 🔀
Symbol: GND \$D_HI/SOURCE \$D_LO/SOURCE O/CAPSYM O/SOURCE GND/CAPSYM Concel Add Library Remove Library Help Use 0/CAPSYM symbol to place a do ground NetGroup Port	Symbol: GND SD_HI/SOURCE SD_LO/SOURCE O/CAPSYM O/SOURCE GND/CAPSYM Libraries: CAPSYM Design Cache SOURCE O Use 0/CAPSYM symbol to place a de ground NetGroup Pot
Show UnNamed NetGroup	Show UnNamed NetGroup

Checking the Session Log

File Edit View Tools Place Macro PSpice Accessories Options Win	indow Help
C:\pspice\designs\MOS-characteristics\MOS-ch	New Window Gascade Tile Horizontally Tile Vertically Arrange Icons 1 Session Log 2 C:\pspice\designs\MOS-characteristics\MOS-characteristics.opj 3 / - (SCHEMATIC1 : NMOS)
Analog or Mixed A/D	Close All Windows
ession Log (3.50, 3.40) Creating PSpice Netlist INFO(ORNET-1041): Writing PSpice Flat Netlist C:\pspice\designs WARNING(ORNET-1085): Your design does not contain a Ground You may not be able to run analog simulation on this design. To run analog simulation, your design must have at least one Ground Ignore this warning, if this is a digital design. INFO(ORNET-1156): PSpice netlist generation complete	ns\MOS-characteristics nd (0) net.
	For Help, press F1

S

SPICE SI units prefixes

name	SI	SPICE	C/C++ style
tera	Т	T, t	1e12, 1E12
giga	G	G, g	1e9, 1E9
mega	Μ	MEG, meg	1e6, 1E6
kilo	k	K, k	1e3, 1E3
milli	m	M, m	1e-3, 1E-3
micro	μ	U, u	1e-6, 1E-6
nano	n	N. n	1e-9, 1E-9
pico	р	P, p	1e-12, 1E-12
femto	f	F, f	1e-15, 1E-15

- SPICE is *not case-sensitive*, upper case and lower case letters are equivalent
- be careful not to use M for mega! 15Mohm are 15 milliohm for SPICE
- the unit name can be neglected
- numerical values and prefixes must be typed without spaces

e.g. C = 10uF, 10u, 10e-6, 10E-6f

Basic analyses

- PSpice (not SPICE) can simulate circuits containing any mix of analog and digital devices
- DC analyses
 - bias point (.OP)
 - DC sweep (.DC)
- time-domain analyses
 - transient (.TRAN)
 - Fourier (.FOUR)
- frequency-domain analyses
 - AC sweep (.AC)
 - noise (.NOISE)

Bias point (.OP)

- Iarge-signal DC solution for a particular input voltage/current condition
- the time is removed from the circuit
 - sources with time specifications are set to zero
 - all capacitors are considered open circuits, all inductors shorts
 - DC analysis is a particular case of transient analysis (dv/dt = 0, di/dt = 0)
- automatically computed in any other simulation
- simulation results are printed in the *text output file*
 - list of all node voltages, voltage source currents and total power dissipation
 - detailed bias point information for semiconductor devices

DC sweep (.DC)

- Iarge-signal steady-state circuit DC response when sweeping a voltage/current source, a global parameter, a model parameter or the temperature over a range of values
 - the bias point of the circuit is calculated for each value of the sweep
- nested DC sweep analysis can be performed
 - a second sweep variable can be selected after a primary sweep value has been specified
 - curve families are obtained
 - .DC [sweep] source1/parameter1 START1 STOP1 STEP1 +[source2/parameter2 START2 STOP2 STEP2]
 - parametric sweeps are available with PSpice only
 - the sweep parameter can be LIN (linear) DEC (logarithmically by decades) or OCT (logarithmically by octaves), available with PSpice only 20

Transient analysis (.TRAN)

- large-signal response of the circuit to one or more time-dependent inputs
 - *numerical integration* of a non linear differential equations system
 - a first DC analysis determines the *initial circuit bias conditions*
- voltages and currents tracked over time
 - a smaller integration time step increases both the results accuracy and the simulation duration
 - sometimes convergence problems can occur

.TRAN TSTEP TSTOP [TSTART [TMAX]]

- a transient analysis always begins at t = 0 and ends at t = TSTOP
- TSTEP is the time interval for reporting simulation results in the output file
- before the time **TSTART** no results are recorded
- TMAX is the maximum step size in incrementing the time during transient analysis (numerical integration time-step)

AC sweep (.AC)

- small-signal frequency response of the circuit *linearized* around the bias point sweeping one or more sources over a range of frequencies
 - non-linear devices are linearized to determine their AC small-signal models
 - all independent voltage and current sources that have AC specifications are inputs to the circuit, e.g. VAC and IAC
- outputs include voltages and currents with magnitude and phase
 - the best way to use AC sweep analysis is to set the source magnitude to one, (e.g. ACMAG = 1) in this way the measured output equals the gain, relative to the input source, at that output

.DC sweep points START STOP

- the sweep option can be LIN (linear) DEC (logarithmically by decades) or OCT (logarithmically by octaves)
- specify the number of points per decade

PSpice simulations (1)

- during the schematic entry phase we use symbols, defined inside the Capture libraries
 (.olb files):
 - %CDSROOT%\tools\capture\library
 - %CDSROOT%\tools\capture\library\pspice
- only symbols associated with SPICE electrical models can be simulated by PSpice !
 - symbols of the pspice Capture library can be simulated with the standard *PSpice model libraries* (.lib files) listed in the *nomd.lib* file
 - %CDSROOT%\tools\pspice\library
- models of semiconductor devices can be modified using the *PSpice Model Editor*
- custom PSpice model libraries must be included by hand (see later)

PSpice simulations (2)

- for each simulation you have to create a new simulation profile (.cir file)
- you can define multiple simulation profiles, but PSpice can run only one simulation at a time

imulation Settings - test	
General Analysis Configural Analysis type: Ime Domain (Transient) Image: Configural Time Domain (Transient) Image: Configural Image: Configural Time Domain (Transient) Image: Configural Image: Configural Time Domain (Transient) Image: Configural Image: Configural DC Sweep Image: Configural Image: Configural AC Sweep/Noise Image: Configural Image: Configural Monte Carlo/Worst Lase Parametric Sweep Image: Configural Monte Carlo/Worst Lase Parametric Sweep Image: Configural Save Bias Point Image: Configural Image: Configural Save Bias Point Image: Configural Image: Configural Save Check Points Image: Configural Image: Configural Save Check Points Image: Configural Image: Configural Restart Simulation Image: Configural Image: Configural	tion Files Options Data Collection Probe Window Run to time: 1000ns seconds (TSTOP) Start saving data after: 0 seconds Iransient options seconds Maximum step size: seconds Skip the initial transient bias point calculation (SKIPBP) Run in resume mode Output File Options
	OK Cancel Apply Help

PSpice > New Simulation Profile

The **Simulation Settings** window is a graphical user interface that automatically generates the SPICE analysis directives and writes them in a .cir simulation file

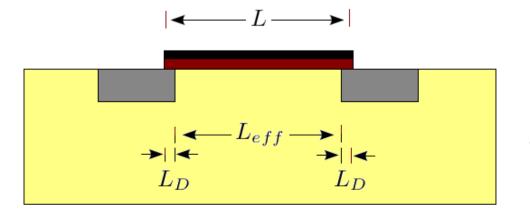
PSpice simulation file example

**** CIRCUIT DESCRIPTION

**** RESUMING tran.cir ****

```
** Creating cirquit file "tran.cir"
** WARNING: THIS AUTOMATICALLY GENERATED FILE MAY BE OVERWRITTEN BY SUBSEQUENT SIMULATIONS
*Libraries.
* Profile Libraries :
* Local Libraries :
* From [PSPICE NETLIST] section of C:\pspice\OrCAD Lite\tools\PSpice\PSpice.ini file:
.lib "nomd.lib"
*Analysis directives:
.TRAN 0 50u 0 10n
PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*))
.INC "..\SCHEMATIC1.net"
**** INCLUDING SCHEMATIC1.net ****
* source SYNTAX-TEST
    0\ 2\ 100p\ TC=0,0
C C1
                                            a simple RC filter
R R1 1 2 10k TC=0,0
V V1
           1 0
+SIN 0 10m 50k 0 0 0
```

MOSFET SPICE models


- the simulator provides 8 MOSFET device models, which differ in the formulation of the I-V characteristic
- the LEVEL parameter selects among different models
 - LEVEL = 1 **Shichman-Hodges model**
 - LEVEL = 2 geometry-based, analytic model
 - LEVEL = 3 semi-empirical, short-channel model
 - LEVEL = 4 **BSIM** model (Berkely short-channel IGSIM model)
 - LEVEL = 5 **EKV model version 2.6 (Enz-Krummenacher-Vittoz)**
 - LEVEL = 6 **BSIM3** version 2.0
 - LEVEL = 7 **BSIM3** model version 3.2
 - LEVEL = 8 **BSIM4** model version 4.1.0
- present day sophisticated models become inadequate after one or two technology generations!

Shichman-Hodges model (1)

- the simplest MOS SPICE model
- the I-V characteristic takes into account the *channel-length modulation* and the *gate overlap* with source and drain implants

$$I_{DS} = \frac{1}{2} K_P \frac{W}{L - 2L_D} \left[2 \left(V_{GS} - V_{TH} \right) V_{DS} - V_{DS}^2 \right] \left(1 + \lambda V_{DS} \right) \quad \text{linear (triode)}$$
region

$$I_{DS} = \frac{1}{2} K_P \frac{W}{L - 2L_D} \left(V_{GS} - V_{TH} \right)^2 \left(1 + \lambda V_{DS} \right)$$
 saturation region

$$K_P = \mu C_{ox}$$

transconductance parameter

The actual distance between the source and the drain is slightly less than L

Shichman-Hodges model (2)

the threshold voltage is given by the body effect formula

$$V_{TH} = V_{TH0} + \gamma \left[\sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F} \right]$$

$$2\phi_F = \phi_B = 2\frac{kT}{q}\ln\left(\frac{N_{sub}}{n_i}\right)$$

2 x (*substrate Fermi potential*) - conventionally assumed equal to the built-in voltage

$$\gamma = \frac{\sqrt{2\varepsilon q N_{sub}}}{C_{ox}} \qquad \text{body effect coefficient} ~~0.3 \div 0.5 ~~V^{1/2} ~~(~C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}~~)$$

- the model includes MOS parasitic capacitances
- the model does not include sub-threshold conduction or any short-channel effects

SPICE parameters

SPICE parameter	description	unit
VTO ^[1]	threshold voltage without body effect	V
GAMMA	body effect coefficient	V ^{1/2}
PHI	$2\phi_F$	V
TOX	gate oxide thickness	m
NSUB	substrate doping	cm ⁻³
LD	gate-source/drain overlap	m
UO	channel mobility	cm ² / Vs
LAMBDA ^[2]	channel-length modulation coefficient	-
KP	transconductance parameter μC_{ox}	A / V ²
\mathbb{W}	gate width	m
L	gate length	m

- [1] **becomes** VTHO for LEVEL > 5
- [2] **defined only for** LEVEL = 1, 2

SPICE modeling

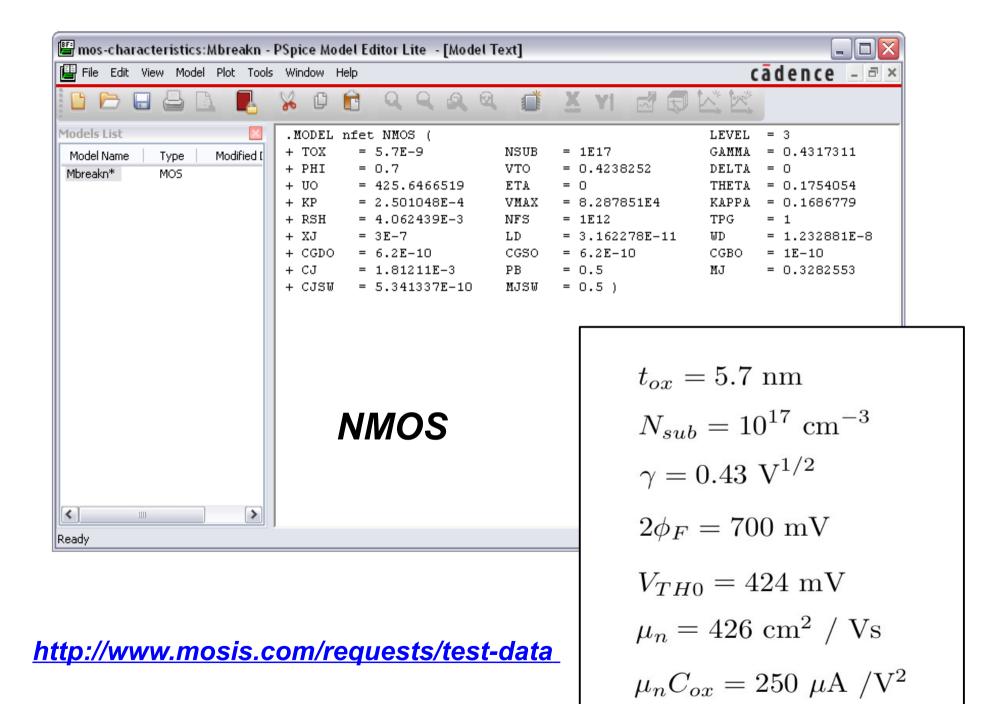
.MODEL <model_name> XMOS(<parameters>)

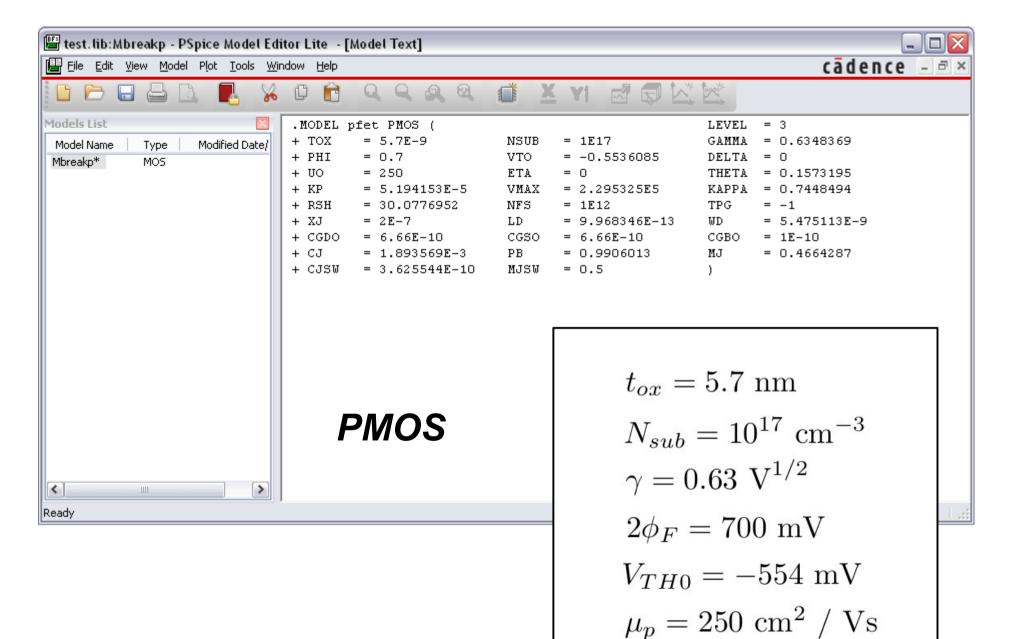
- equations show that 8 parameters are required to specify the I-V device characteristic:
 - 3 geometric parameters (W, L, LD)
 - 5 electrical parameters (KP, LAMBDA, VTO, GAMMA, PHI)
- another possibility is to use process and technology-related parameters
 - TOX, UO, NSUB + VTO, LAMBDA + geometric parameters
 - this represents the SPICE default choice (if also KP, GAMMA and PHI are specified in the code the simulator re-evaluate them from TOX, UO and NSUB values)
- W and L can be specified for each transistor, using a common device model for the other parameters

Examples

.MODEL nfet NMOS(
+ LEVEL = 1	VTO = 0.7	GAMMA = 0.45	PHI = 0.9		
+ NSUB $=$ 9e14	LD = 0.08e - 6	UO = 350	LAMBDA = 0.1		
+ TOX = 9e-9	PB = 0.9	CJ = 0.56e - 3	CJSW = 0.35e-11		
+ MJ = 0.45	MJSW = 0.2	CGDO = 0.4e-9	JS = 1.0e - 8)		

.MODEL pfet PMOS(
+	LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8		
+	NSUB = $5e14$	LD = 0.09e-6	UO = 100	LAMBDA = 0.1		
+	TOX = 9e-9	PB = 0.9	CJ = 0.94e - 3	CJSW = 0.32e-11		
+	MJ = 0.5	MJSW = 0.3	CGDO = 0.3e-9	JS = 0.5e-8)		

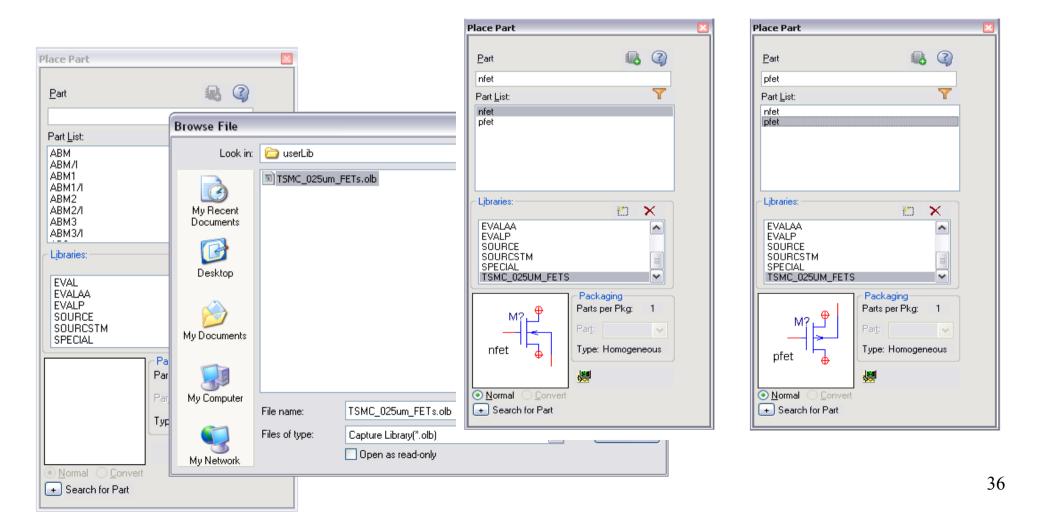

- capacitive parameters are not described in this lecture
- B. Razavi, Design of Analog CMOS Integrated Circuits, ch 2, pp. 36-37


Higher level models

- the LEVEL = 1 model maintains reasonable I-V accuracy for channel lengths as small as 4 μ m
- high-order effects must be considered for more accurate simulations
 - the threshold voltage is not constant along the channel, neither for long-channel devices
 - sub-threshold conduction
 - the modelization of the channel-length modulation with only λ is far from accurate !
- empirical constants and parameterizations are introduced to improve the accuracy of models for short-channel devices ($L < 1 \mu m$)
- for more information see :
 - B. Razavi, Design of Analog CMOS Integrated Circuits, ch 16, pp. 591-599
 - PSpice Reference Guide, ch. 2 pp. 222-269

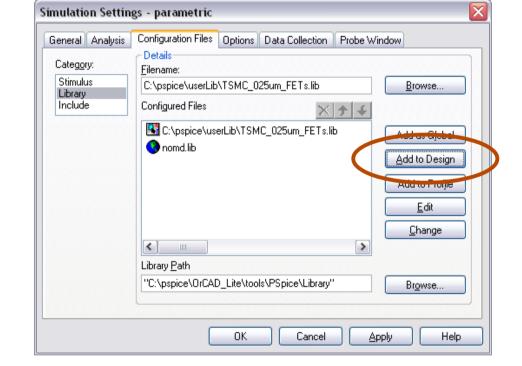
Edit SPICE models in PSpice

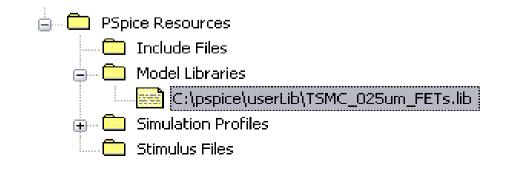
	🖸 OrCAD Capture CIS - Lite											
File	Edit View Tools Place Macro PSpice Accessories Options Window Help											
В	3	<u>U</u> ndo	Ctrl+Z	5 0	0	▼ .	Q	0.0	۲			
		R <u>e</u> do	Ctrl+Y	-				- • -	•			
		Repeat	F4		18 18 18	3 18 🕐 🖤	0	LI Q				
Ē		Label <u>S</u> tate	•	-								
1	26	Cu <u>t</u>	Ctrl+X									
	¢	<u>С</u> ору	Ctrl+C									
		Paste	⊂trl+V		🗳 mos-charact	teristics:Mbreakn -	PSpice N	lodel Edi	tor Lite -	- [Model Text]		
		Delete	Del	_	📳 File Edit View Model Plot Tools Window Help Cadence - 🗗 🗙							
		Select Aļl	Ctrl+A				📕 🐒 🖻 🔒 Q Q Q 🗊 👗 YI 🗟 🗔 🏹 🕅					
		Properties	Ctrl+E		Models List 🛛 .model Mbreakn NMOS							
		Lin <u>k</u> Database Part	Ctrl+L		Model Name	Type Modified (.mode	1 Mprea	akn MMOE			
		Derive Database Part			Mbreakn*	MOS						
6		PSpice Model										
		T Spice Stimulus										
		Mirror	•					_				
		Rotate	R					P	'Sp	oice Model Editor		
		_ Lock										
		U <u>n</u> Lock										
		Eind	Ctrl+F									
		Glo <u>b</u> al Replace							write	e or edit here a custom		
		Add Part(s) To <u>G</u> roup										
		Remo <u>v</u> e Part(s) From Group						SPICE model and save it				
					<							
					Ready							
											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	



35

 $\mu_p C_{ox} = 52 \ \mu \mathrm{A} \ / \mathrm{V}^2$


- NMOS and PMOS transistor symbols are defined in the TSMC_025UM_FETS.olb Capture library
- add C:\pspice\userLib\TSMC_025um_FETs\TSMC_025UM_FETS.olb
 from the Place Part window (Ctrl + A)



Including external PSpice libraries

Simulation Settings > Configuration Files > Category > Library

General Analysis		Window
Category: Stimulus Library Include	Pakans Filename: C:\pspice\userLib\TSMC_025um_FETs.lib Septigured Files	Browse
	nomd.lib	Add as Global Add to Design Add to Profile Edit Change
	Library Path "C:\pspice\OrCAD_Lite\tools\PSpice\Library"	Browse

In order to perform simulations, **custom** PSpice model libraries (.lib) must appear in the Project Manager window, in the **Model Libraries** folder

More technicalities

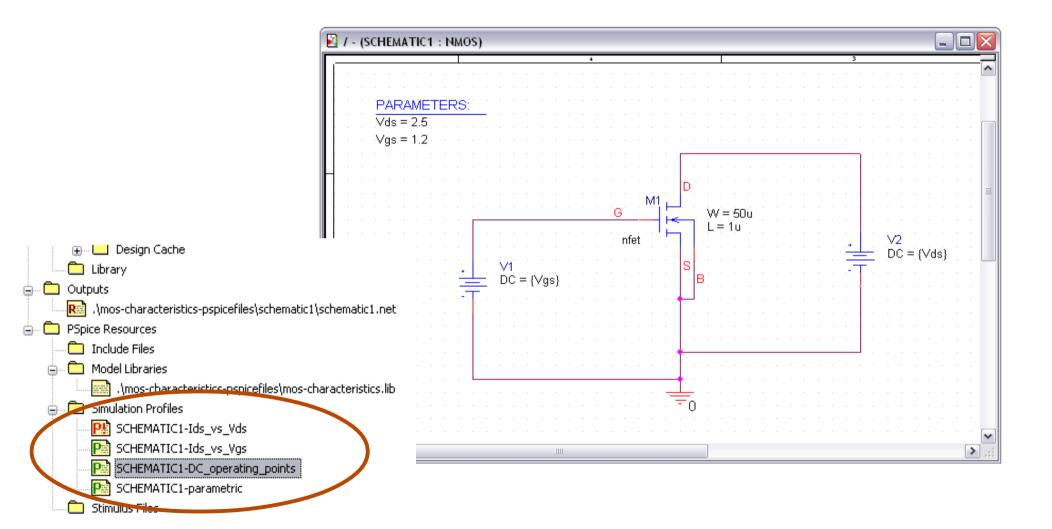
- PSpice always performs a bias analysis, but detailed transistor parameters such as V_{TH} g_m g_{ds} etc. are available in the output file only if explicitly required by checking the Include detailed bias point information for non linear controlled sources and semiconductors (.OP) option (select Output File Options if a Time Domain (Transient) analysis is performed)
- some transistor defaults can be modified through

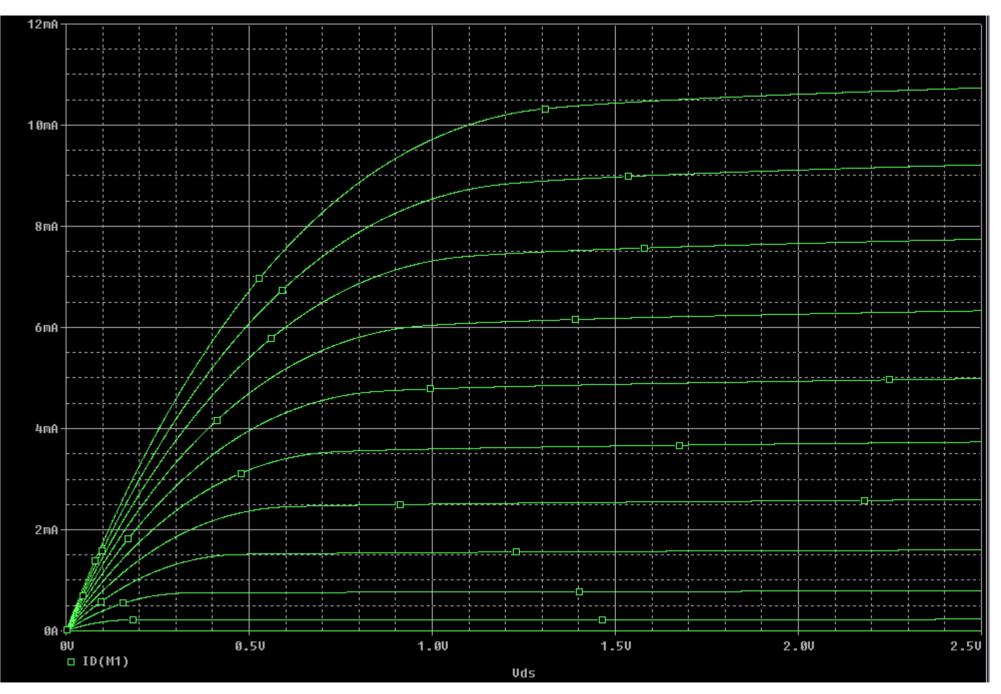
Simulation Settings > Options > Analog Simulation > MOSFET Options

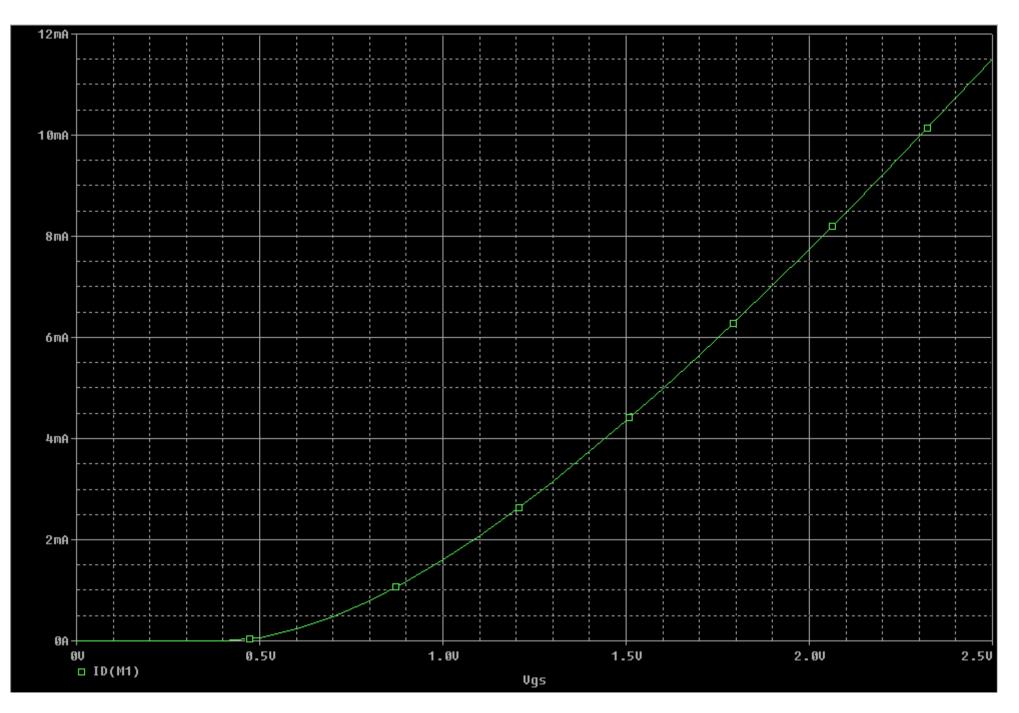
- global parameters and mathematical expressions are identified with braces { }
- add global parameters to SPECIAL /PARAM instances

DC operating point details (1)

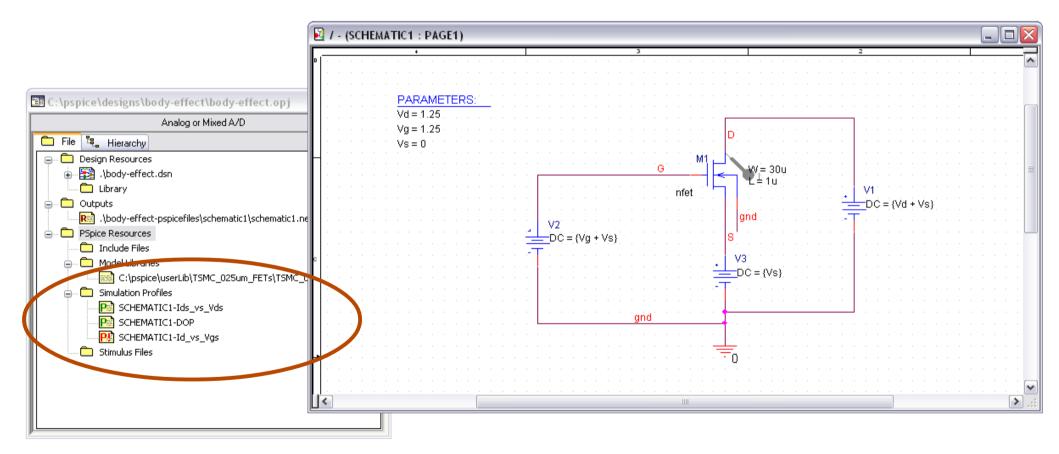
Simulation Settings - DC_operating_points						
General Analysis Configuration Files Options Data Collection Probe Window						
<u>A</u> nalysis type:	- Output File Options					
Bias Point Include detailed bias point information for nonlinear controlled sources and semiconductors (.OP)						
Options:						
General Settings		ity analysis (.CENC)				
Temperature (Sweep)	Output <u>v</u> ariable					
Load Bias Point	Calculate sma	C:\pspice\designs\MOS-characteristics\MOS-characteristics-PSpiceFiles\SC 💶 🗖 🔀				
	From Input so	146: **** MOSFETS 147:				
	To <u>O</u> utput va	148: 149: NAME M_M1				
		150: MODEL nfet 151: ID 2.60E-03				
		152: VGS 1.20E+00				
		153: VDS 2.50E+00				
		154: VBS 0.00E+00				
		155: VTH 4.29E-01				
		156: VDSAT 6.09E-01 157: Lin0/Sat1 -1.00E+00				
		158: if -1.00E+00				
		159: ir -1.00E+00				
		160: TAU -1.00E+00				
	OK	161: GM 5.37E-03				
		162: GDS 4.59E-05 163: GMB 1.09E-03				
		164: CBD 0.00E+00				
		165 CBS 0.00F+00				
		166: CGSOV 3.10E-14				
		167: CGDOV 3.10E-14				
		168: CGBOV 1.00E-16				
		170: CGD 0.00E+00				
		171: CGB 0.00E+00				
		172:				
		173: JOB CONCLUDED				
		174:				
		:. <				

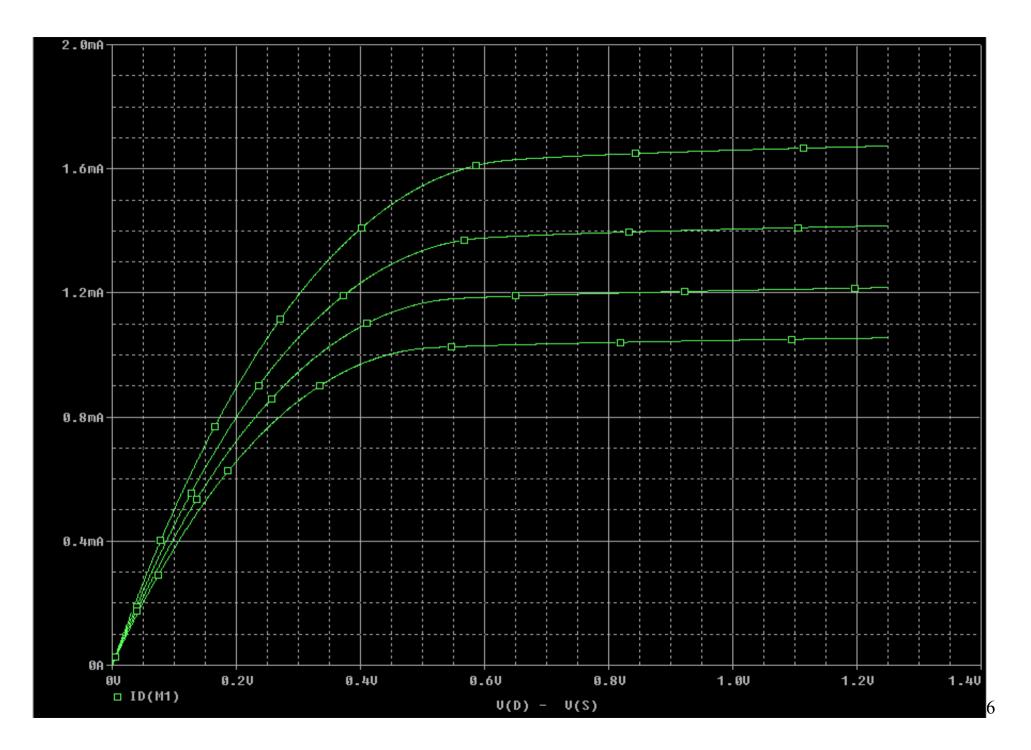

DC operating point details (2)

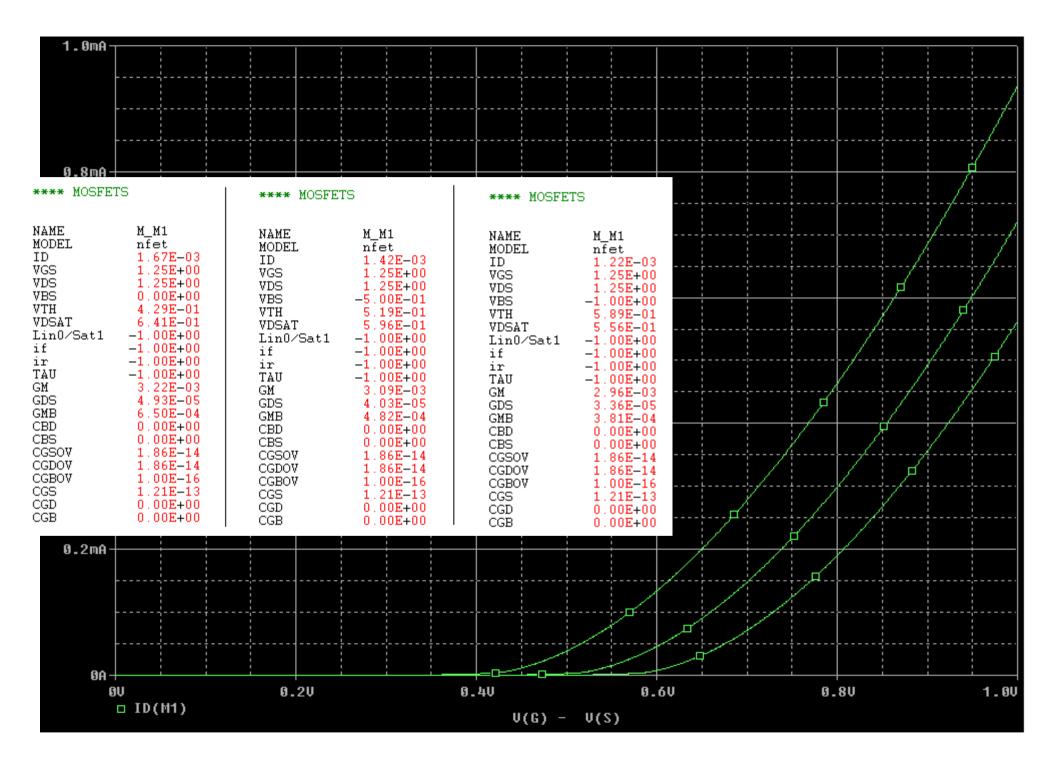

out file MOS parameter	description	unit
ID	drain current	Α
VGS	gate-source voltage	V
VDS	drain-source voltage	V
VBS	bulk-source voltage	V
VTH	threshold voltage (with body-effect)	V
VDSAT	saturation voltage	V
Lin0/Sat1 ^[1]	operating region	-
if ^[1]	-	-
ir ^[1]	-	-
TAU ^[1]	drain current time delay with respect to changes in the gate voltage	Sec
GM	transconductance	S
GDS	output conductance (ro = 1/GDS)	S
GMB	bulk-effect transconductance	S


[1] meaningless for LEVEL = 1, 2, 3

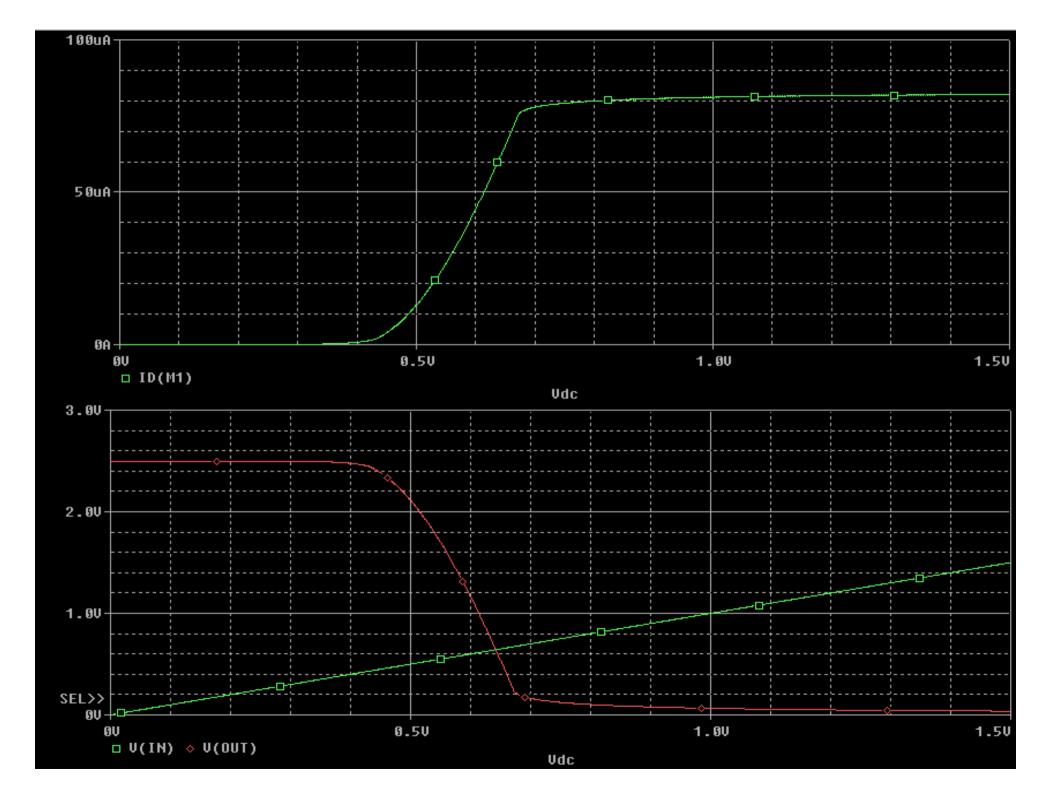
Capture shortcut	description	
Р	place part	
Ctrl + A	add library	
G	place ground	
F	place power	
Ctrl + E	edit component properties	
W	place wire	
Ν	place net alias	
J	place junction	
ESC	end mode	
R	rotate component	
H / V	mirror horizontally/vertically	
Т	place text	
I /O or Ctrl + rolling	zoom in/out	
rolling	scroll up/down	
Shift + rolling	scroll left/right	
Ctrl + X / Ctrl + V	cut/paste	
DEL, CANC	delete component	

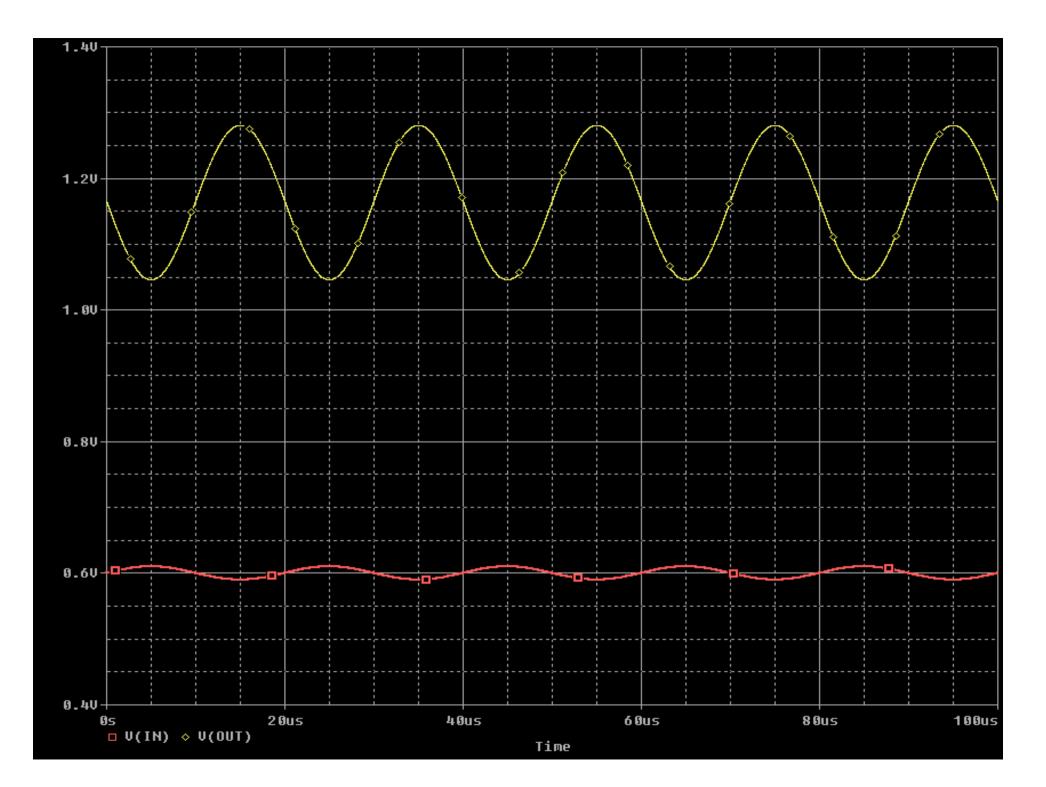

Ex. 1 – NMOS characteristics





Ex. 2 – Body effect





Ex. 3 – Basic common source

2 / - (SCHEMATIC1 : PAGE1)	
+ <u>3</u>	2
vdd gnd vdd 2.500V 0V 2.500V	PARAMETERS: Vdc = 600m
V2 ¹ · · · · · · · · · · · · · · · · · · ·	
$ \frac{1}{2} \frac{\sqrt{2}}{DC} = 2.5 \qquad \frac{44.49uA}{DC} = 0 \qquad \frac{44.49uA}{44.49uA} $	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·
₹ R1 30k	
out 1.165V	
M1 44.49uA in W= 10u	
600.0mV 0A L=1u	
VOFF = {Vdc} VAMPL = 5m 0A1 -44.49uA	
FREQ = 50k AC = 1	
In a state of the	

150	**** MOSFE	TS
151		
152		
153	NAME	M M1
154	MODEL	nfet
155	ID	4.45E-05
156	VGS	6.00E-01
157	VDS	1.17E+00
158	VBS	0.00E+00
159	VTH	4.29E-01
160	VDSAT	1.79E-01
161	Lin0/Sat1	-1.00E+00
162	if	-1.00E+00
163	ir	-1.00E+00
164	TAU	-1.00E+00
165	GM	4.02E-04
166	GDS	9.28E-07
167	GMB	8.54E-05
168	CBD	0.00E+00
169	CBS	0.00E+00
170	CGSOV	6.18E-15
171	CGDOV	6.18E-15
172	CGBOV	1.00E-16
173	CGS	4.03E-14
174	CGD	0.00E+00
175	CGB	0.00E+00
176		

$$A_V = -g_m \frac{r_o R_D}{r_o + R_D} \approx -g_m R_D$$

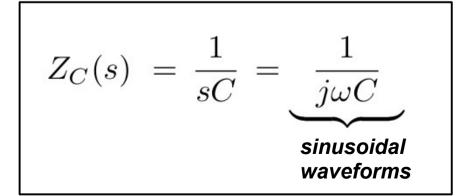
$$\begin{split} R_D &= 30 \ \mathrm{k}\Omega \\ g_m &= 402 \ \mu\mathrm{S} \\ g_{ds} &= 0.928 \ \mu\mathrm{S} \\ r_o &= \frac{1}{g_{ds}} \approx 1 \ \mathrm{M}\Omega \end{split}$$

$$|A_{V,sim}| = \frac{234 \text{ mV } pk\text{-}pk}{20 \text{ mV } pk\text{-}pk} = 11.7$$
$$|A_{V,exp}| = 402 \times 10^{-6} \frac{30 \times 10^3 \text{ } 10^6}{(30 + 10^3)10^3} = 11.7$$

Laplace theory - refresh

$$F(s) = \int_0^\infty dt \ f(t) \ e^{-st} \qquad s = \sigma + j\omega$$

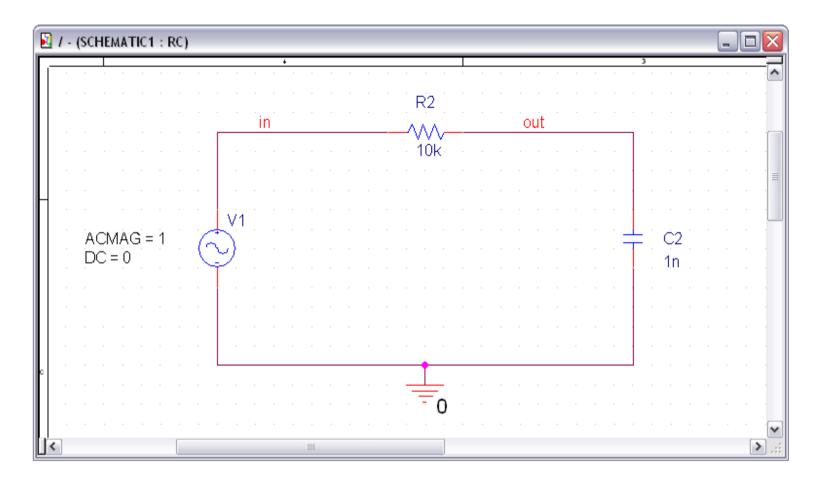
Capacitor :


Inductor :

$$i_C(t) = \frac{dq(t)}{dt} = C \frac{dv_C(t)}{dt}$$

$$v_C(t) = \frac{1}{C} \int_{-\infty}^t i_C(t') dt'$$

$$i_L(t) = \frac{1}{L} \int_{-\infty}^t v_L(t') dt'$$

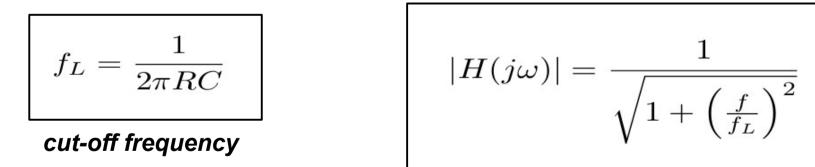

$$v_L(t) = L \frac{di_L(t)}{dt}$$

$$Z_L(s) = sL = \underbrace{j\omega L}$$

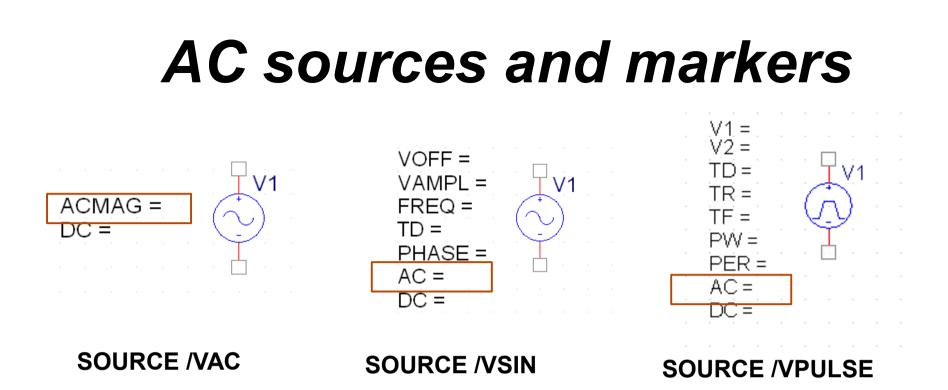
sinusoidal waveforms

Ex. 4 – RC frequency analysis

$$V_{out}(s) = \frac{V_{in}(s)}{R+1/sC} \ 1/sC$$

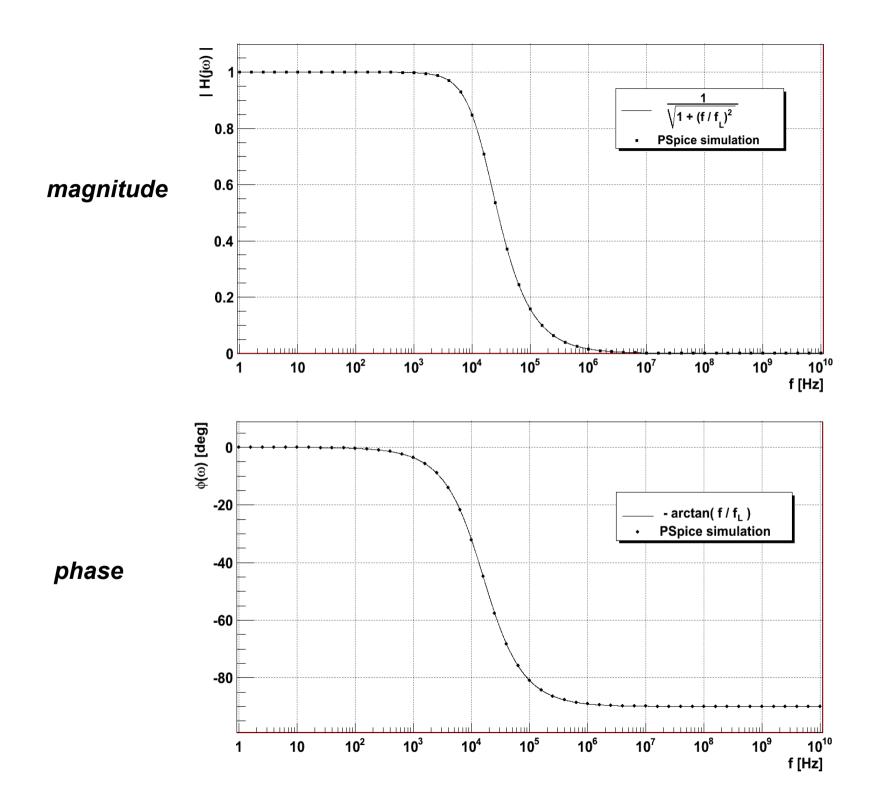

$$\frac{V_{out}(s)}{V_{in}(s)} = H(s) = \frac{1}{1 + sRC}$$

53


Voltage magnitude and phase

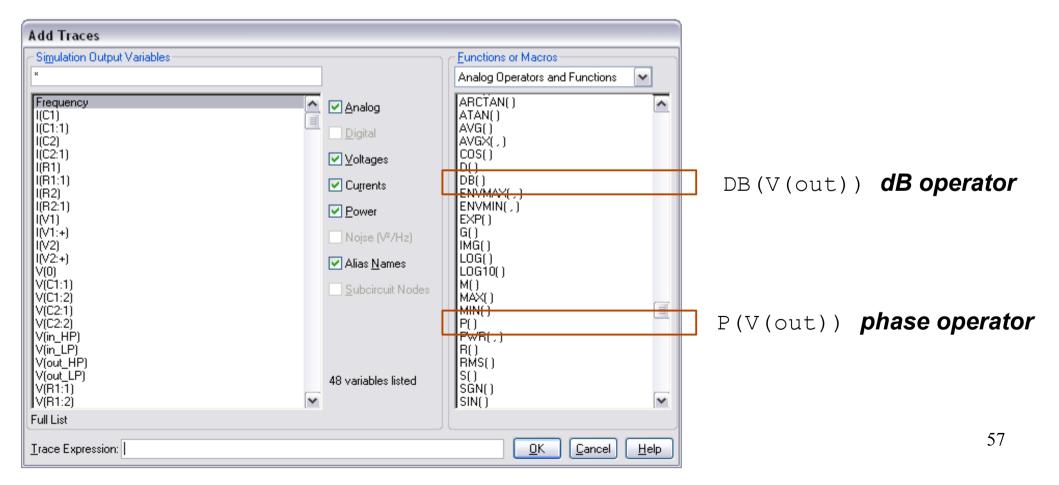
$$H(j\omega) = \frac{1}{1 + j\omega RC} = |H(j\omega)| e^{j\phi(\omega)}$$

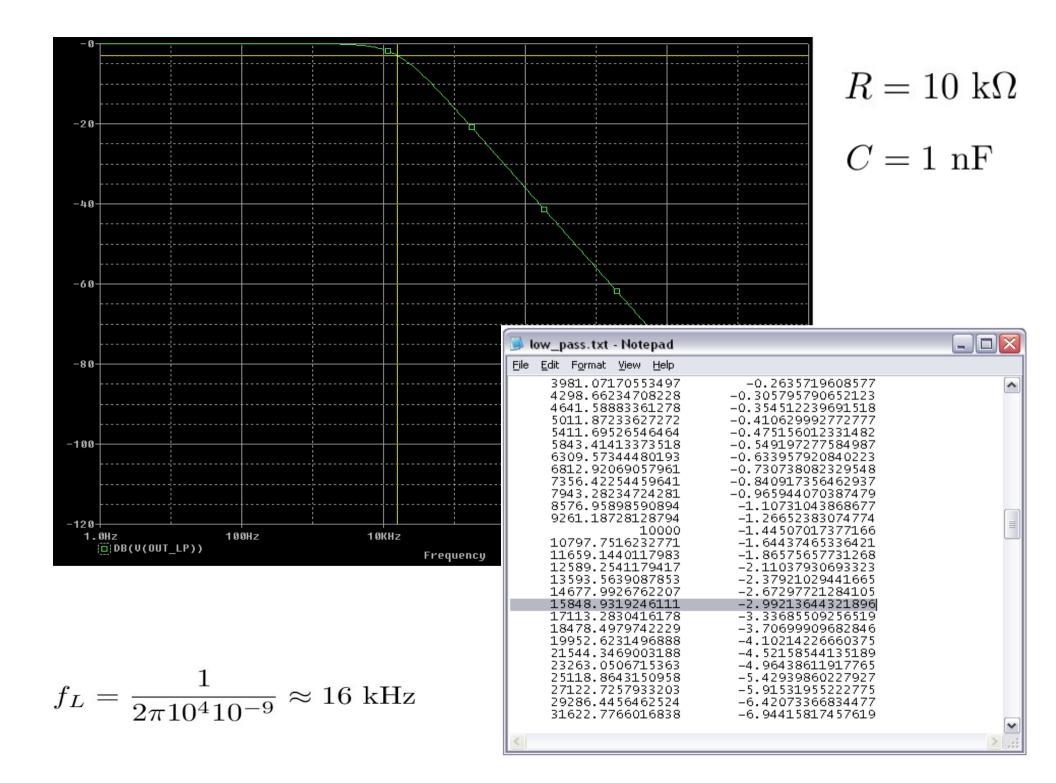
$$|H(j\omega)| = \frac{1}{\sqrt{1+\omega^2 R^2 C^2}} = \frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_L}\right)^2}} \qquad RC = \frac{1}{\omega_L} = \frac{1}{2\pi f_L}$$



$$\phi(\omega) = -\arctan(\omega RC) = -\arctan\left(\frac{f}{f_L}\right)$$

- all independent voltage and current sources that have AC specifications are inputs to the circuit, e.g. VAC and IAC
- the best way to use AC sweep analysis is to set the source magnitude to one, (e.g. ACMAG = 1) in this way the measured output equals the gain, relative to the input source, at that output
- outputs voltages and currents with *magnitude* and *phase* can be plotted using special markers :

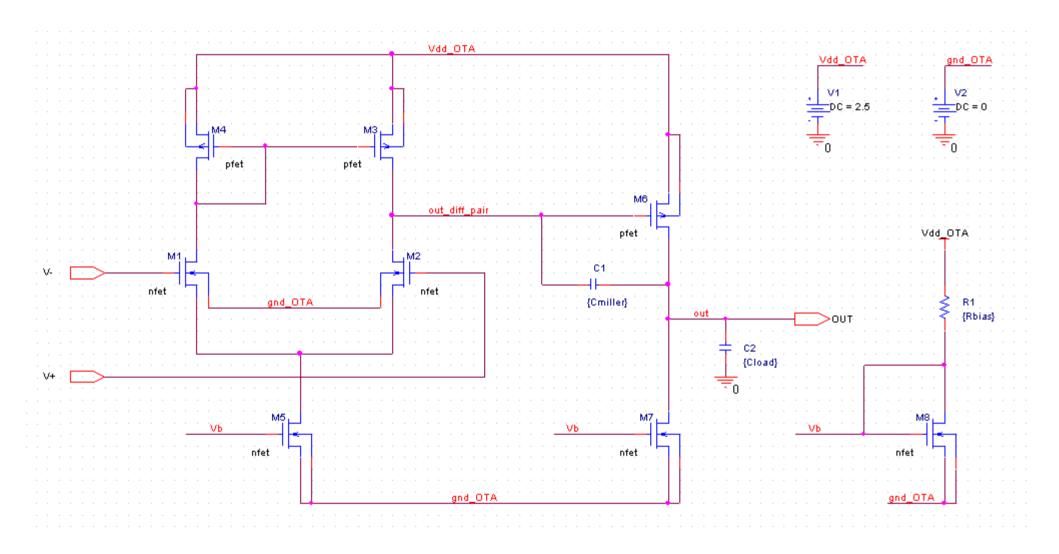

PSpice > Markers > Advanced > dB Magnitude of Voltage (Current) Phase of Voltage (Current)

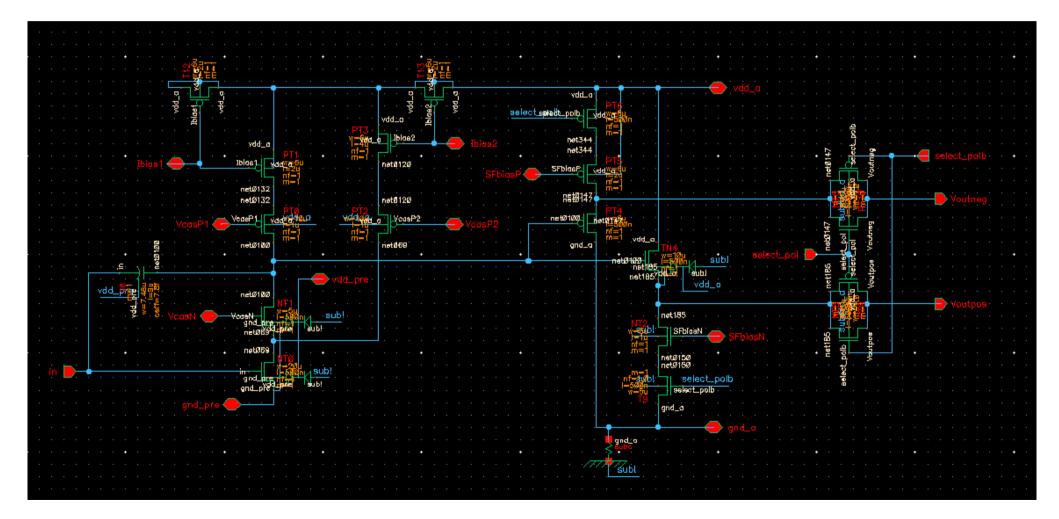


Decibel magnitude

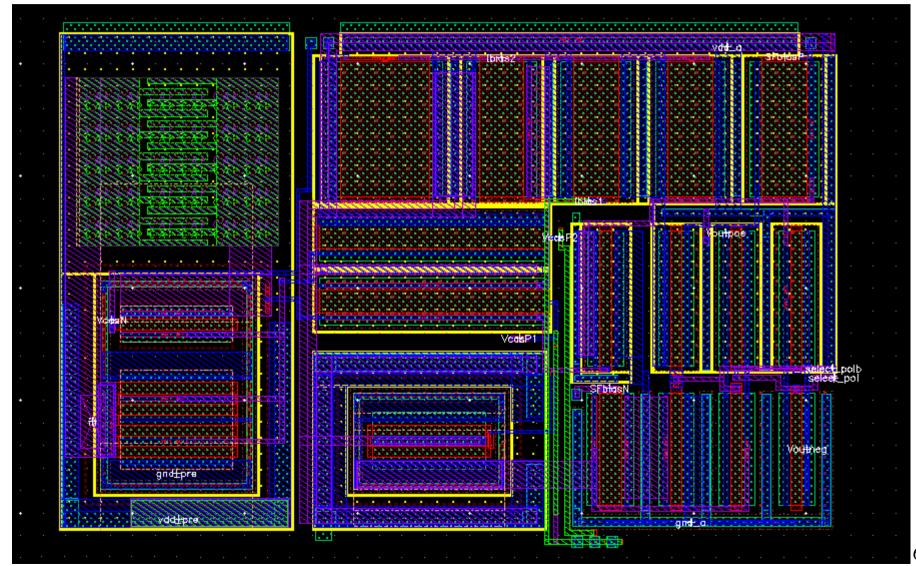
 $|H(j\omega)|_{dB} = 20\log|H(j\omega)|$

$$f_{-3\,dB} = f_L$$




Designing tips and tricks

- schematics should contain only physical elements like transistors, resistors, capacitors etc.
- a real IC is biased through external PADS
 - for voltage supplies use net aliases and CAPSYM /VCC, CAPSYM /VCC_BAR etc. symbols
 - use an external VDC source for the GND itself, in this way you can also simulate ground voltage fluctuations
- use net aliases and hierarchical ports/off-page connectors for input and output nets
- check the Session Log and PSpice .out files for errors
- always check each transistor operating region !
- (usage of simulator) × (common sense) ≈ constant


Example: OTA Miller

Cadence VLSI tools (Virtuoso)

Layout

