Esperimentazioni II

Traccia delle esercitazioni PSpice

L. Pacher

pacher@to.infn.it

Outline

- the Bipolar Junction Transistor (BJT), look at the blackboard...
- basic usage of PSpice 'on fly'
- lab. experience \#8 - BJT characteristic curves
- lab. experience \#9 - NPN common-emitter amplifier

The first transistor (1947)

1956 Nobel prize in Physics
"for their researches on semiconductors and their discovery of the transistor effect"

SPICE and PSpice

- Simulation Program with Integrated Circuits Emphasis, SPICE
- 'schematic' is a meaningless word for a computer, just a human graphical visualization of the circuit
- a sort of interpreted 'markup' and programming language with its own syntax, a plain text input file and another plain text output file
- the description of a circuit using the SPICE language is called netlist
- SPICE file $=$ netlist + electrical models + analysis directives
- netlist and analysis directives are now automatically generated using graphical interfaces
- Personal SPICE, PSpice is commercial graphical front-end for personal computers running MS Windows operating systems
- the student version is free, of course with some limitations
- installation details are in the backup section

PSpice student

Be sure to always run Capture with high privileges! Pspice simulation files require some (not well defined...) write privileges

- Capture - schematic entry tool
- PSpice A/D - analog, digital and mixed-signals circuit simulator
- PSpice Model Editor - edit plain text SPICE models or extract models from data sheets
- PSpice Stimulus Editor - graphical editor for time-based waveforms

Getting started

```
* OrCAD Capture

\section*{■sman 回国}


The Session Log keeps trace of your work... and highlights possible errors !

\section*{Create a new project}

File \(\rightarrow\) New \(\rightarrow\) Project...


\section*{The graphical interface}


\section*{Part 1 \\ Schematic entry}


\section*{Place components}

Place \(\rightarrow\) Part...


symbols of electrical components are organized into libraries
- the first time you are using PSpice you have to import the basic libraries


\section*{Basic libraries}

- ANALOG contains ideal R, L, C and controlled voltage/current sources
- BREAKOUT contains ideal semiconductor devices (transistors, diodes etc.)
- EVAL contains a list of real semiconductor devices (diodes, transistors, logic gates, OPAMP etc. )
- SOURCE contains ideal voltage and current sources

\section*{NPN 2N2222}

Check the datasheet!

Philips Semiconductors Product specification

\section*{NPN switching transistors}

2N2222; 2N2222A

\section*{FEATURES}
\(\infty\) High current (max. 800 mA )
\(\infty\) Low voltage (max. 40 V ).

\section*{APPLICATIONS}
\(\infty\) Linear amplification and switching.

\section*{DESCRIPTION}

NPN switching transistor in a TO-18 metal package. PNP complement: 2N2907A.

\section*{PINNING}
\begin{tabular}{|c|l|}
\hline PIN & \multicolumn{1}{c|}{ DESCRIPTION } \\
\hline 1 & emitter \\
\hline 2 & base \\
\hline 3 & collector, connected to case \\
\hline
\end{tabular}

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ CONDITIONS } & MIN. & MAX. & UNIT \\
\hline\(V_{\text {CBO }}\) & \begin{tabular}{l} 
collector-base voltage \\
2N2222 \\
2N2222A
\end{tabular} & open emitter & - & & \\
\hline
\end{tabular}


A general-purpose commercial BJT

\section*{NPN TIP31}

\section*{Check the datasheet again!}

TIP31, TIP31A, TIP31B, TIP31C
NPN SILICON'POWER TRANSISTORS
JULY 1968 - REVISED MARCH 1997

\section*{electrical characteristics at \(25^{\circ} \mathrm{C}\) case temperature}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & \multicolumn{3}{|c|}{TEST CONDITIONS} & MIN & TYP & MAX & UNIT \\
\hline \[
\mathrm{v}_{\text {(BR)CEO }} \quad \begin{aligned}
& \text { Collector-emitter } \\
& \text { breakdown voltage }
\end{aligned}
\] & \[
\begin{aligned}
& c=30 \mathrm{~mA} \\
& \text { see Note 5) }
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{B}}=0\) & \[
\begin{aligned}
& \text { TIP31 } \\
& \text { TIP31A } \\
& \text { TIP31B } \\
& \text { TIP31C }
\end{aligned}
\] & \[
\begin{gathered}
40 \\
60 \\
80 \\
100
\end{gathered}
\] & & & V \\
\hline \({ }^{\text {ICES }} \quad \begin{aligned} & \text { Collector-emitter } \\ & \text { cut-off current }\end{aligned}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=80 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CE}}=100 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CE}}=120 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CE}}=140 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{BE}}=0 \\
& \mathrm{~V}_{\mathrm{BE}}=0 \\
& \mathrm{~V}_{\mathrm{BE}}=0 \\
& \mathrm{~V}_{\mathrm{BE}}=0
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { TIP31 } \\
& \text { TIP31A } \\
& \text { TIP31B } \\
& \text { TIP31C }
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.2 \\
& 0.2 \\
& 0.2 \\
& 0.2
\end{aligned}
\] & mA \\
\hline ICEO \begin{tabular}{l} 
Collector cut-off \\
current
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CE}}=60 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& I_{B}=0 \\
& I_{B}=0
\end{aligned}
\] & TIP31/31A TIP31B/31C & & & \[
\begin{aligned}
& 0.3 \\
& 0.3
\end{aligned}
\] & mA \\
\hline IEBO \begin{tabular}{l} 
Emitter cut-off \\
current
\end{tabular} & \(\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}\) & \(\mathrm{I}_{\mathrm{C}}=0\) & & & & 1 & mA \\
\hline \begin{tabular}{ll}
\(h_{\text {FE }}\) & \begin{tabular}{l} 
Forward current \\
transfer ratio
\end{tabular}
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}
\end{aligned}
\] & (see Notes 5 and 6) & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & & 50 & \\
\hline \[
\mathrm{V}_{\mathrm{CE} \text { (sat) }} \quad \begin{aligned}
& \text { saturation voltage } \\
& \text { sation }
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{B}}=375 \mathrm{~mA}\) & \(\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}\) & (see Notes 5 and 6) & & & 1.2 & V \\
\hline \(V_{B E} \quad\) Base-emitter & \(\mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V}\) & \(\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}\) & (see Notes 5 and 6) & & & 1.8 & V \\
\hline \(\mathrm{h}_{\text {fe }} \quad\)\begin{tabular}{l} 
Small signal forward \\
current transfer ratio
\end{tabular} & \(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}\) & \(\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}\) & \(\mathrm{f}=1 \mathrm{kHz}\) & 20 & & & \\
\hline \(\left|\mathrm{h}_{\text {fe }}\right| \quad\)\begin{tabular}{l} 
Small signal forward \\
current transfer ratio
\end{tabular} & \(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}\) & \(\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}\) & \(\mathrm{f}=1 \mathrm{MHz}\) & 3 & & & \\
\hline
\end{tabular}

NOTES: 5. These parameters must be measured using pulse techniques, \(\mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s}\), duty cycle \(\leq 2 \%\).
6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.


Another general-purpose commercial BJT

This should be the transistor available for your experimental measurements in lab...


You can place multiple instances of the same component, press ESC or right click \(\rightarrow\) End Mode to come back to the select mode



Components are on the table, now we have to make connections...

\section*{Make connections}

Place \(\rightarrow\) Wire...

柬 OrCAD Capture
\begin{tabular}{lllll}
\hline File & Edit & View & Place Macro & PSpice
\end{tabular} Accessories
left click at the start point and left click again at end one


\section*{Place grounds}
- at least one node MUST be named 0 for the common reference voltage (floating-node errors otherwise)
- Place \(\rightarrow\) Ground...
- use for instance CAPSYM /GND symbol but change Name into 0 !



\section*{Edit instance properties}

- each component has a set of related properties and parameters
- a property/parameter has a name and a value
- some properties names/values are displayed in the schematic, some others by default are shadowed
- left click to select a component, then right click \(\rightarrow\) Edit Properties...


For a better visualization choose the Pivot view (right click on the top-left square in the table)



\section*{SPICE SI units and prefixes}
\begin{tabular}{cccc} 
name & SI & SPICE & C/C++ style \\
\hline tera & T & T, t & \(1 \mathrm{e} 12,1 \mathrm{E} 12\) \\
giga & G & \(\mathrm{G}, \mathrm{g}\) & \(1 \mathrm{e}, 1 \mathrm{E} 9\) \\
mega & M & MEG, meg & \(1 \mathrm{e} 6,1 \mathrm{E} 6\) \\
kilo & k & \(\mathrm{K}, \mathrm{k}\) & \(1 \mathrm{e} 3,1 \mathrm{E} 3\) \\
milli & m & \(\mathrm{M}, \mathrm{m}\) & \(1 \mathrm{e}-3,1 \mathrm{E}-3\) \\
micro & \(\mu\) & \(\mathrm{U}, \mathrm{u}\) & \(1 \mathrm{e}-6,1 \mathrm{E}-6\) \\
nano & n & \(\mathrm{N} . \mathrm{n}\) & \(1 \mathrm{e}-9,1 \mathrm{E}-9\) \\
pico & p & \(\mathrm{P}, \mathrm{p}\) & \(1 \mathrm{e}-12,1 \mathrm{E}-12\) \\
femto & f & \(\mathrm{F}, \mathrm{f}\) & \(1 \mathrm{e}-15,1 \mathrm{E}-15\)
\end{tabular}
- SPICE is not case-sensitive, upper case and lower case letters are equivalent
- be careful not to use M for mega! 15 Mohm are 15 milliohm for SPICE
- the unit name can be neglected, hence 10 and 10 V are equivalent for SPICE
- numerical values and prefixes must be typed without spaces, e.g. 10uF, 10u, 10e-6, 10E-6f

\section*{Naming nets}

Place \(\rightarrow\) Net Alias...


Give a name (net alias) to most significant nodes of the circuit!


\section*{Back to the ground...}


Just to remind us that the emitter is tied to zero...

\section*{Complete schematic}


\section*{Useful shortcuts}
\begin{tabular}{c|c} 
Capture shortcut & description \\
P & place part \\
G + A & add library \\
F & place ground \\
Ctrl + E & place power \\
W & edit component properties \\
N & place wire \\
J & place net alias \\
ESC & place junction \\
R & end mode \\
H / V & rotate component \\
T & mirror horizontally/vertically \\
I /O & place text \\
Ctrl + X / Ctrl + V & zoom in/out \\
DEL, CANC & cut/paste \\
\hline
\end{tabular}

\title{
Part II \\ Simulations ! (and more theory...)
}


\section*{Voltage and current markers}

PSpice \(\rightarrow\) Markers \(\rightarrow\) Voltage Level / Current Into Pin

- put voltage markers on wires
- put current markers on pins


\section*{Simulation profiles}

PSpice \(\rightarrow\) New Simulation Profile

- transient analysis
- DC sweeps
- frequency (AC) analysis
- bias point

\section*{Bias point}
- large signal DC solution for a particular input voltage/current condition
- the time is removed from the circuit
- sources with time specifications are set to zero
- all capacitors are considered open circuits, all inductors shorts
- DC analysis is a particular case of transient analysis \((d v / d t=0, d i / d t=0)\)
- automatically computed in any other simulation
- simulation results are printed in the text output file and can be visualized in the schematic using bias point markers
- list of all node voltages, currents and total power dissipation
- detailed bias point information for semiconductor devices (not included by default)

\section*{DC sweep}
- large signal steady-state circuit DC response when sweeping a voltage/current source, a global parameter, a model parameter or the temperature over a range of values
- the bias point is calculated for each value of the sweep
- nested DC sweep analysis can be performed
- a secondary sweep variable can be selected after a primary sweep value has been specified
- curve families are obtained

\section*{Vbe vs lbb (Vce = const)}


Is it in agreement with our expectations?

\section*{Export the plot image}

\section*{Window \(\rightarrow\) Copy to Clipboard...}


\section*{Copy to Clipboard - Color Filter}

\section*{Background}
\(\sqrt{ } /\) make window and plot backgrounds transparent
-Foreground
\(\bigcirc\) use screen colors
- change white to black
\(\bigcirc\) change all colors to black
Choose the color scheme, then open your favorite image editor (Paint works fine) and simply do a 'paste' inside it

\section*{Export numerical values}

- the waveform can be exported as a set of \((x, y)\) numerical values
select the waveform name at the bottom-left of the window, then Edit \(\rightarrow\) Copy

- open a text editor (Notepad works fine)
- \(\quad\) simply do a 'paste' inside the text editor
- save the file with the .csv extension, it can be opened with Excel, Mathematica, ROOT etc.

\section*{Welcome to the real world...}


\section*{Bias point analysis}


PSpice \(\rightarrow\) Bias Points \(\rightarrow\) Enable Bias Current (Voltage) Display

\section*{Vbe vs Vbb (Vce = const)}


\section*{Vbe vs lb (Vce = const)}


Change the \(x\)-axis variable in order to plot Vbe versus the base-current again


\section*{Vbe vs lb (Vce = const)}

Input characteristic, \(\quad\) Vbe \(=f(I b)\)


When Vbe reaches \(\sim 700 \mathrm{mV}\) the transistor is in full conduction regime !

\section*{Ic vs Vce (Vbe = const)}


Output characteristic, \(I c=f(V c e)\)
Ic vs Vce (Vbe = const)


\section*{Nested DC sweeps}


Primary sweep by varying Vcc for a fixed value of Vbb (and therefore of Vbe)


The primary sweep is repeated for different values of Vbb (and therefore of Vbe)

\section*{N.B.}

The simulation profile is just one, don't create two different profiles!

\section*{Ic vs Vce for different Vbb}


What's happening?

\section*{Ic vs Vbb (Vce = const)}


Ic vs Vbb (Vce = const)


\section*{Ic vs lb (Vce = const)}

Change the \(x\)-axis variable....


The relationship between Ic and Ib is linear!
\(h_{F E}=I c / l b\) vs lb (Vce = const)


\section*{\(h_{F E}=I c / l b\) vs Vbb (Vce sweep)}


\section*{Temperature sweep}


\section*{Temperature sweep}
\(h_{F E}\) increases with the temperature... does it make sense?


\section*{Lab measurements}
- input characteristics \(\rightarrow\) lb vs Vbe, Vce = const
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Vce = Vce1 } & \multicolumn{2}{c|}{ Vce = Vce2 } \\
\hline lb \([\mu \mathrm{A}]\) & Vbe \([\mathrm{mV}]\) & lb \([\mu \mathrm{A}]\) & Vbe \([\mathrm{mV}]\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
- output characteristics \(\rightarrow\) Ic vs Vce, Vbe = const
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ lb = lb1 } & \multicolumn{2}{c|}{ lb = lb2 } \\
\hline \(\mathbf{I c}[\mu \mathrm{A}]\) & Vce \([\mathrm{mV}]\) & Ic \([\mu \mathrm{A}]\) & Vce \([\mathrm{mV}]\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

\section*{Part III \\ NPN common-emitter amplifier}


\section*{NPN common-emitter amplifier}


\section*{Voltage Transfer Characteristic (VTC)}


\section*{Increasing the load}

interdiction (cutoff) \(\rightarrow\) active \(\rightarrow\) saturation

Ic vs Vbb

interdiction (cutoff) \(\rightarrow\) active \(\rightarrow\) saturation

\section*{Ic vs Vce... the load line!}



\section*{Transient analysis}
- large-signal response of the circuit to one or more time-dependent inputs
- numerical integration of a non linear differential equations system
- a first DC analysis determines the initial circuit bias conditions
- voltages and currents are tracked over time
- a smaller integration time step increases both the results accuracy and the simulation duration
- sometimes convergence problems can occur
- you can specify in the simulation settings window the maximum step size in incrementing the time during transient analysis (numerical integration time-step)

Options:
```

 General Settings
    ```
    General Settings
    Monte Carlo/Worst Case
    Monte Carlo/Worst Case
    Parametric Sweep
    Parametric Sweep
    Temperature [Sweep]
    Temperature [Sweep]
    Save Bias Point
    Save Bias Point
    \square \text { Load Bias Point}
```

 \square \text { Load Bias Point}
    ```

General Analysis \(\mid\) Include Files \(\mid\) Libraries \(\mid\) Stimulus \(\mid\) Options \(\mid\) Data Collection \(\mid\) Probe Window \(\mid\)


\section*{Transient analysis}

Choose a duration ~ 2/FREQ and an integration time-step of 10-100 ns

\section*{Transient analysis}


The circuit is an inverting amplifier !

\section*{Increasing the amplitude}


\section*{Output saturation}


Are you surprised?

\section*{Increasing the frequency}


\section*{Increasing the frequency}


\section*{AC analysis}
- small-signal frequency response of the circuit linearized around the bias point by sweeping one or more AC sources over a range of frequencies
- non-linear devices (diodes, transistors etc.) are linearized to determine their AC small-signal models
- all independent voltage and current sources that have AC specifications are inputs to the circuit
- outputs include voltages and currents with magnitude and phase
- the best way to use \(A C\) sweep analysis is to set the source magnitude to one (e.g. \(A C M A G=1 \mathrm{~V}, \mathrm{AC}=1 \mathrm{~A}\) ) in this way the measured output equals the voltage/current gain (relative to the input source) at that output
- the sweep can be linear, logarithmically by decades or logarithmically by octaves



\section*{Remind!}

The AC analysis is a small signal analysis! The circuit is linearized around the DC operating point, hence you can use any ACMAG value! By using ACMAG=1V you immediately obtain the voltage gain plot with \(\operatorname{Vout}(f)=\operatorname{Vout}(f) / 1 \star 1\)

\section*{Vout/Vin frequency response}


\section*{dB voltage gain}


PSpice \(\rightarrow\) Markers \(\rightarrow\) Advanced \(\rightarrow d B\) Magnitude of Voltage

You can plot dB voltages and currents and phases using special markers

\section*{dB voltage gain}


\section*{Backup}

\section*{Installation details}
- create a main installation directory \(\mathrm{C}: \backslash \mathrm{pspice}\)
- download the Windows program executable 91 pspstu.exe ( \(\sim 27 \mathrm{MB}\) ) and put it in \(\mathrm{C}: \backslash\) pspice
http://personalpages.to.infn.it/~pacher/pspice/91pspstu.exe
www.electronics-lab.com/downloads/schematic/013/index.html
- the executable is a self-extractor compressed file, create a \(C: \backslash\) pspice \(\backslash\) tmp temporary directory for the extracted installation files and launch the 91 pspstu.exe executable


- when the extraction process has finished launch the Setup.exe installation program in the temporary directory choose Capture as schematic entry tool
- change the default installation directory path into \(C: \backslash\) pspice
- this is a safer choice because there are no blanks in the installation path !

Select Installation Directory \(x\)


Setup will add program icons to the Program Folder listed below. listed below. Type a new folder name, or select one from the Existing Folders list.
Click Next to continue. Click Cancel to exit.
Program Folders:
PSpice Student
Existing Folders:
Accessories
Administrative Tools
Games
Startup
\(\square\)


Setup has enough information to start copying files. If you want to review or change any settings, click Back. If you are satisfied with the settings, click Next to begin copying files.

\section*{Current Settings:}

Products to install:
Capture
PSpice A/D
Installation Directory:
c:lpspice

\section*{Folder:}

PSpice Student


Installation has completed successfully. See the Release Notes for last-minute information about this release.
\(\sqrt{V}\) View the Release Notes.

Click Finish to complete Setup.


\section*{埗 Release Notes for PSpice Student Version Release 9.1 - Microsoft Internet Explorer \\ File Edit View Favorites Tools Help \\  \\ Address C:'pspice'pspsvrl.htm \\ PSpice Student Version Release 9.1 Release Notes}\(\rightarrow\) Go
Links "

February, 2000
These release notes apply specifically to the PSpice Student Version Release 9.1. For detailed information about using a particular product, please refer to the online Help and documentation for that product.

The Student Version of PSpice is intended for use by college students and professors who are interested in learning about analog and mixed-signal simulation. It is not intended to demonstrate the capabilities of any product other than PSpice. Because it is distributed freely, certain limitations have been imposed on the libraries and functionality. If you are interested in obtaining a fully functional version of PSpice, contact Orcad Sales at 1-800-671-9505. (International customers may call 1-503-671-9500.)

To obtain the very latest information about workarounds or solutions to problems that you may encounter, visit the Orcad Design Network on the Orcad Web site at \(w w w\). orcad.com/odn.

If you want to learn more about this student version of PSpice (e.g. limits in the number of components) read the Release Notes

- at the end of the installation process delete the 91 pspstu.exe file and the temporary directory
create a further \(\mathrm{C}: \backslash\) pspice \(\backslash\) projects directory that will contain all your PSpice projects```

