#### A new pixel readout chip for the CMS experiment at HL-LHC

M. Costa, G. Dellacasa, N. Demaria, G. Mazza, L. Pacher, A. Rivetti

## Background

- two major LHC upgrades referred to as Phase 1 (after LS1) and Phase 2 (after LS3)
- while SST replacement will be done once in the life of the experiment (LS3),
  SPT replacement is required more times due to radiation damages (~ mod 2yr LHC)
  - *new* vs. *present* (e.g.  $PSI46_v1 \rightarrow PSI46_v2$ )
  - present pixel sensors need replacement after **100-200 fb**<sup>-1</sup> (LS1)
  - building a *new pixel detector* for Phase 1 (LS2, 3 layers  $\rightarrow$  4 layers)
  - replacing innermost layer(s) *during Phase 1* (2019)  $\rightarrow$  *Phase 1b*
  - building a further *new pixel detector* for Phase 2 ( > 2021)
- Phase 1 2014 → 2016 pixel detector will be made of present pixel sensors and a modification of present PSI46 chip in VLSI 250 nm

## Phase 1b idea

- LHC Phase 1 period has some free parameters
  - *length* is not yet clearly defined (max. up to 2021)
  - **bunch spacing** (50 ns vs. 25 ns) could bring to 2x PU and higher radiation damage
- Phase 1 pixel detector (i.e. PSI46\_v2) will work fine up to 2 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
- proposal is to launch the development of a new generation of pixel detector
  - *new sensors* with a much higher radiation tolerance (**3D**, *planar*, *diamond*, ... )
  - completely *new readout chip*
- Phase 1b idea : we want to be ready to implement improvements already at the first opportunity
  - new ROC, new sensor, same read-out links and controls as Phase 1
  - final targets are *Phase 2 requirements*
  - opportunity of replacing L1 BPIX between LS2 and LS3 using this new pixel detector
- TDR Appendix: Evolution of Phase 1 pixel detector (under work)

# ASIC design group

- a strong collaboration between experienced groups on ASIC design is essential
- a first workshop has been held in Turin (21st-23st May)
  - <u>https://indico.cern.ch/confe\_renceDisplay.py?confld=191883</u>
  - discussion/choice of the *technology*
  - **basic specs and guide lines** for the chip development
  - definition of a *working model* for the ASIC design
- at present interested groups are CERN, FNAL, Perugia, Pisa (FE-I4 experience) and Turin
- definition of a *first 6 months work plan*

## Guide lines for ASIC design

- VLSI technology: TSMC 65 nm
- pixel size: < 50 μm x 100 μm</p>
- thickness: 200 μm
- event rate: 2 GHz/cm<sup>2</sup>
- detection inefficiency: < 1 %</p>
- L1 trigger latency: 6.4 μs
- trigger-matching on the pixel region (+ self triggering ???)
- pixel sensor ???
  - planar, 3D, diamond ???
  - **sensor-independent** analog read-out (**double polarity**)
  - input capacitance: < 100 ÷ 200 fF
  - leakage current compensation is required ???
- very front-end: CSA/shaper + 4 bit ToT (FE-I4 style) or 4 bit ADC
- analog-oriented chip ( 50% analog, 50% digital)

#### ROC – 5 years development plan

|    | New Pixel Detector Development Plan                             |    | 2012       |    |    | 2013       |    |    | 2014       |      |      | 2015 |      |       |     | 2016 |    |       |        | 2017 |    |            |            |    |       |
|----|-----------------------------------------------------------------|----|------------|----|----|------------|----|----|------------|------|------|------|------|-------|-----|------|----|-------|--------|------|----|------------|------------|----|-------|
|    |                                                                 | Q1 | <b>Q</b> 2 | Q3 | Q4 | <b>Q</b> 1 | Q2 | Q3 | <b>Q</b> 4 | Q1   | Q2   | Q3   | Q4   | Q1    | Q2  | Q3   | Q4 | Q1    | Q2     | Q3   | Q4 | <b>Q</b> 1 | <b>Q</b> 2 | Q3 | Q4    |
|    |                                                                 |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 1  | Technical Design Report                                         |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 2  | NEW ROC DEVELOPMENT                                             |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 3  | ROC technical spec                                              |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 4  | ROC Architecture study/evaluation                               |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 5  | Technology definition                                           |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 6  | Design of building blocks                                       |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 7  | Submittion of MPW: building block                               |    |            |    |    |            | 1  |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 8  | Test of building block from 1st MPW                             |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 9  | Preparation of a first small prototype                          |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 10 | Submission of MPW: 1st prototype                                |    |            |    |    |            |    |    |            |      | 2    |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 11 | Test of parts from 2nd submission                               |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 12 | Milestone: Pixel architecture and size decided                  |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 13 | Design of second prototype bondable with sensor                 |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 14 | Submission of MPW: 2nd prototype (bug fix+pixel size+final arch | 1  |            |    |    |            |    |    |            |      |      |      |      |       |     | 3    |    |       |        |      |    |            |            |    |       |
| 15 | Test of second prototype                                        |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 16 | Preparation of engineering run for full size chip               |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 17 | Technical Review of the design                                  |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 18 | Submission of engineering run                                   |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        | eng  |    |            |            |    |       |
| 19 | test of new chip                                                |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 20 | Second engineering run if needed                                |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 21 | Irradiation test                                                |    |            |    |    |            |    |    | buil       | ding | bloc |      |      | l pr  | ot. |      |    |       | ll pro | ot.  |    |            |            |    |       |
| 22 | Beam test: system test / high rate                              |    |            |    |    |            |    |    |            |      |      |      |      |       |     |      |    |       |        |      |    |            |            |    |       |
| 23 | Bump bonding                                                    |    |            |    |    |            |    |    |            |      |      | ?    | l pr | ototy | pe  |      |    | ll pr | otot   | ype  |    |            | New        | Ro | :&Sen |

# To do list for next 6 months

- accessing TSMC 65 nm libraries and design-kit
  - OK analog
  - many digital libraries!
- define and set up a *collaborative framework* 
  - define common tools and computing environments
  - installation of *ClioSoft* SW in all sites
- starting simulations for analog parts (FNAL and Turin)
- getting started with *basic architecture studies* (CERN + Perugia)
  - System Verilog HDL language adopted
  - digital simulations oriented to *trigger matching in the pixel region* and *Phase 2 specs*

## Getting started with CR SAR ADCs

- Turin analog interests on an ADC-based FE (CSA/shaper + ADC)
  - *in-pixel ADC* (4 bit) for charge detection
  - *chip-periphery ADCs* (e.g. 10 bit) for slow control structures
- state of the art for medium speed (40-100 MHz) ADCs are CR SAR ADCs
- CR SAR ADCs use <u>binary-weighted capacitor arrays</u> for the DAC
  - proper choice of DAC reference capacitance is fundamental
  - modeling capacitor array mismatch effects becomes important in order to understand component requirements
- high-level simulation software is under development (Python)

#### Single-ended CR SAR ADC example



#### Static characteristic

4bit, 20% mismatch - static characteristic



#### **Dynamic characteristic**

4 bit, 10% mismatch - Normalized dynamic code density



### FTT test



THD, SINAD, SNHR, SFDR, ENOB extracted from the FFT

## My next steps

- starting with the TSMC 65 nm technology
  - first simulation results are required for next collaboration meeting (~ 5th July)
  - **DISC building block** schematic design, simulation, optimization
  - getting started with *layouts* in 65 nm (i.e. learning TSMC *design rules* from scratch)
- Ink my basic ADC simulations with more realistic process corners and cadence MCs
- Iearning some VHDL and Verilog (if not time consuming)