

Upgrade Simulation Meeting, CERN, Januaryr 29th 2013

PIXEL PHASE 2 SIMULATION STATUS & PLANS

A. Tricomi (INFN Catania)

- No results for Pixel Phase 2 presented
- This talk/meeting is intended to start an iterative process between HW and SW communities
 - Remind what has been done for the TDR
 - Show what is available
 - Discuss what is feasible in short/medium timescale
 - Get input on the needs
 - Help to design a more detailed task list for Phase2 studies ready for the next Tracker week
 - Beneficial also for Phase1
 - No net separation between Phase2 Pixel wrt Phase1 & Phase2 OT

- StdGeom:
 - Current pixel detector geometry (3 barrel layers, 2 disks)
 - Current beam pipe
 - Dedicated "SLHC" release CMSSW_4_2_8_SLHC2 to use Design/Ideal conditions and same configurations/settings for tracking
 - Assumend Data Loss (50PU) ~16% @ BPIX-L1

□ R30F12 geometry:

- Upgrade geometry with 4 BPIX layers and 3 endcap disks
 - First barrel layer at R=30 with 12 faces
 - New detailed material description according to PSI drawings
 - New beampipe (Sunanda) implemented
- CMSSW_4_2_8_SLHCtk + 520 backporting
- Assumed Data Loss BPIX1 2.34% (other layers rescaled accordingly)
- Baseline Phase1 geometry for TDR studies

R30F12_smpx (known as "Phase1b"):

- Same as R30F12 but
- \square Pixel size 100x75 μ m²
- \square 220 μ m² thick
- threshold=1200 e-

■ Assumed data loss = no data loss with the new chip

R30F12 vs R30F12_smpx Muons (E-gun) —Transverse IP resolution

R30F12 vs R30F12_smpx Muons (E-gun) –Longitudinal IP resolution

Upgrade R30F12 Upgrade R30F12 – small pitch

R30F12_smpx vs R30F12 b tagging

ttbar sample at <PU>=0, high purity tracks

CSV: mistag vs. b tag efficiency

Small improvement at 0 PU wrt Upgrade Phase1 detector But...

Small pixel scenario: btagging performance

BPIX Layer1: pixel size $75 \times 100 \ \mu m^2$, 220 μm thickness ROC threshold 1200 e⁻ instead of 2000

Significant improvement at 100 PU wrt Upgrade Phase1 detector Good news towards Phase2

Efficiency vs hit

· 1

Fake rate vs hit

Small pixel scenario: tracking with ttbar at 100PU

BPIX Layer1: pixel size 75x100 μm^2 , 220 μm thickness ROC threshold 1200 e^- instead of 2000

11

Significant improvement at 100 PU wrt Upgrade Phase1 detector Good news towards Phase2

축

- Use of reduced pitch clearly helps to significantly improve the performance
 - For IP already at low luminosity
 - For tracking and btagging at the high PU foreseen for Phase2
- Small pixel scenario with 100x75 is NOT intended as a "final" choice
 - It is just an exercise as a starting point

- Error assigned to hit position crucial for a proper impact parameter estimate
- □ Either we use
 - Pixel Templates
 - Specific of the current pitch size
 - Disable
 - PixelCPEGeneric algorithm used for hit position estimate (based on track angles and charge sharing)
 - Preliminary study needed since existing template cannot be used
 - Error estimation based only on cluster size

Alessia Tricomi

inceriors and puns

Hit study – local reconstruction

Pixel local reconstruction

- Pixel Templates disabled
- Error estimation based only on cluster size
- Need to be done for every pitch scenario (just chosen one!)

definition: σ of Gaussian fit of hit pull distribution

Tracker Week - Phase 1 B Meeting

Alessia Tricomi

Pixel local reconstruction

- Error assigned to hit position crucial for a proper impact parameter estimate
- Pixel Templates disabled
 - Specific of the current pitch size
- PixelCPEGeneric algorithm used for hit position estimate (based on track angles and charge sharing)
 - Preliminary study needed since existing template cannot be used
 - Error estimation based only on cluster size
- Digitization: modification made to the digitizer
 - Different RO threshold for layer 1/other BPIX layers and FPIX
 - Configurable variable in python

Use the same geometry as for Phase1 and

Change the pixel pitch

Extend to other layers/Disk if needed

Whole machinery to evaluate hit resolution to be redone

Change threshold

Just a configurable parameter

Add RO inefficiency

just a configurable parameter

All "easy" variation wrt Phase1 can be done in a reasonable short timescale

- Restore use of the template both for Phase1 and eventually "Phase1b"
- Extend use of the templates for taking into account also ageing effect
 - Plan already discussed with Morris
 - We will start soon
 - Beneficial for current, Phase1 and Phase2

□ This work is of high priority but will take time

□ Implement the new geometry

- Two fold strategy not in contrast
 - TKLayout
 - Direct implementation in XML
- Extend new template strategy to the Phase2 geometry
- Start dedicated performance studies
- This is clearly the "final" goal but still most of the issues need to be addressed

Back up slides

Tracker Week - Phase 1 B Meeting

Alessia Tricomi

hit position resolution

definition: $\boldsymbol{\sigma}$ of Gaussian fit of hit residual distribution

Alessia Tricomi

Longitudinal Hit Resolution Iongitudinal hit resolution

- more than 30% improvement at $\eta \sim 0$ (single pixel clusters)
- ~10 μ m improvement at $|\eta| > 1$ (significant charge sharing).

hit errors in PixelCPE code tuned accordingly!

cluster size is \sim constant in track η . dominated by cl.size = 2.

- ~20% improvement as expected by pitch reduction
- resolution below 10 μ m in full η range.

hit errors in PixelCPE code tuned accordingly

C. Favaro - University of Zurich

TK Upgrade Simulation WG meeting during TK days - 19/07/2010

Tracker Week - Phase 1 B Meeting

Alessia Tricomi