

Università degli Studi di Torino Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Fisica

Studio della velocità di deriva nelle camere a muoni dell'esperimento CMS al CERN con i primi dati di collisioni protone-protone

Candidato Filippo Pisano

Relatore Dott. Nicola C. Amapane

Sessione di Laurea del 5 Ottobre 2010

Il rivelatore CMS dispone di uno spettrometro a muoni integrato nel giogo di ritorno del campo magnetico

•Le particelle prodotte nelle collisioni p-p vengono rivelate tramite diversi tipi di rivelatori a gas:

- Resistive Plate Chambers (RPC) presenti in tutto lo spettrometro
- Cathode Strip Chambers (CSC), nella regione in avanti
- Camere a Deriva o Drift Tubes (DT), nella regione centrale, sulle quali verte il mio lavoro

Spettrometro a Muoni di CMS

- 5 "Wheel" numerate da W-2 a W+2
- 4 strati detti "Stazioni" : MB1, MB2, MB3,MB4
- 12 "Settori" azimutali

Le particelle cariche sono curvate dal campo magnetico: dalla misura del raggio di curvatura della traccia nel piano x-y si risale al momento trasverso $p_{\rm T}$ delle particelle.

<u>Obiettivi</u>

- Le camere a deriva di CMS sono rivelatori a gas costituiti da celle indipendenti
 - Nella cella, un sistema di elettrodi genera un campo elettrico quasi uniforme
 - Un filo anodico raccoglie gli elettroni prodotti per ionizzazione dalle particelle incidenti

La posizione della traccia viene determinata sulla base del tempo di deriva degli elettroni

Campo uniforme \rightarrow La relazione fra posizione della traccia e tempo di drift è lineare. La velocità (effettiva) con la quale gli elettroni raggiungono il filo è detta Velocità di deriva v_d .

<u>Mi sono occupato di studiare la variazione della v_d nelle varie camere e</u> valutare l'effetto che ha sulla ricostruzione dei muoni prodotti nelle collisioni

Struttura delle camere

- Uno strato di celle è un "Layer"
- 4 Layer sovrapposti, sfasati di mezza cella, formano un "SuperLayer " (SL)
- Una "**Camera**" è costituita di 3 SuperLayer
 - I SL1 e il SL3 misurano le coordinate nel piano di bending φ
 - il <mark>SL2</mark> misura la coordinata Z

La stazione 4 non è fornita di SL2 che misurino la coordinata Z

Ricostruzione

La ricostruzione è il processo che porta dal tempo misurato alla definizione della traiettoria delle particelle

Ogni misura in una cella è detta "Hit"

La distanza della traccia dal filo è calcolata come:

$$d_i = (t_i - t_0) v_a$$

- t_i : tempo misurato
- *t*₀: piedistallo temporale
- $v_d = 54.3 \ \mu m/ns$

Calcolata da test beam e misure sui raggi cosmici; dipende dalla contaminazione della miscela di Ar/CO_2 e, in maniera effettiva, dal campo magnetico e dall'inclinazione della traccia.

d;

Ricostruzione (2)

Gli hit nei vari Layer vengono combinati in "Segmenti"

•Pattern Recognition

 Selezione degli hit appartenenti a una traccia e risoluzione dell'ambiguità dx/sx

•Fit Lineare dei parametri (x, α) indipendentemente nei SL Z e φ

Misura di v_d

Nel SL φ , con 8 hits a disposizione, è possibile eseguire un fit mantenendo t_o e/o v_d come parametri liberi insieme ai parametri $x \in \alpha$ del segmento

- Questo algoritmo è stato sviluppato in CMS per la ricostruzione dei raggi cosmici
- Calcola le correzioni $\Delta t_0 e \Delta v_d$ rispetto ai valori impostati

Ho usato questo algoritmo su un campione di eventi con muoni al fine di

- ottenere per ogni segmento le correzioni rispetto al valore di v_d fissato.
- calcolare i valori medi della correzione per ogni camera
- studiare l'effetto della variazione:

ri-ricostruzione degli hits con la velocità v_d corretta

Fit a 4 parametri

Risultati: v_d misurata

- In generale v_d maggiori di $\approx 1.8\%$ rispetto al valore attualmente utilizzato
- Valori minori in W±2, MB1
 - Effetto del campo magnetico in queste camere già osservato su raggi cosmici
- Simmetria fra Wheel positive e negative

Risultati: v_d misurata

Piccola dispersione sui settori → uso valore medio
Simulazione: valori minori, stesso andamento

"Closure Test"

- Ri-ricostruzione dei segmenti con le correzioni appena descritte
- Ricalcolo di $\Delta v_d / v_d$
- Le correzioni residue sono trascurabili

Effetto sulla ricostruzione

Le correzione della v_d migliora la risoluzione, seppur in modo modesto

Filippo Pisano

Validazione

La correzione non ha pregiudicato la bontà della ricostruzione. •

Non ci si aspettano significativi miglioramenti per muoni nel range di momento attualmente accessibile

Muoni

Uno sguardo ai muoni nel campione

Massa Invariante J/ψ PDG 3096.916 ± 0.011 MeV/c² Fit picco: 3090.2 ± 0.2 (stat) MeV/c²

 $\sigma = 44 \text{ MeV} \longrightarrow \text{Risoluzione su } M_{\mu\mu} \approx 1,4\%$

Conclusioni

Studio dell'algoritmo per la misura della v_d sui dati

- L'algoritmo converge
- Le velocità di deriva calcolate risultano superiori al valore attualmente in uso.
- La correzione migliora la risoluzione delle camere, sebbene in maniera modesta.
- Non si osservano effetti indesiderati nella ricostruzione delle tracce.
- Ho presentato questo studio alla riunione del gruppo di lavoro delle DT di CMS (28/09/2010 - "CMS Muon Barrel Workshop")

Grazie dell'attenzione

Grazie al Dott. Amapane per la generosissima quantità di tempo ed energie che mi ha dedicato; ai miei tre; a tutti gli amici: hanno impreziosito la mia esperienza incalcolabilmente più di quanto la sola Fisica avrebbe potuto.

5 Ottobre 2010

Filippo Pisano

19

Dimensioni CMS

5 Ottobre 2010

Distorsione delle linee di Drift dovuta al campo magnetico residuo

5 Ottobre 2010

Filippo Pisano

Superlayer, angolo α

Miglioramento dei Residui (e.g.: W0 MB1)

- Miglioramento nella larghezza dei residui
- La dipendenza del residuo rispetto alla distanza dal filo è più lineare

5 Ottobre 2010

Filippo Pisano